分类树(决策树)是一种十分常用的分类方法.核心任务是把数据分类到可能的对应类别. 他是一种监管学习,所谓监管学习就是给定一堆样本,每个样本都有一组属性和一个类别,这些类别是事先确定的,通过学习得到一个分类器,这个分类器能够对新出现的对象给出正确的分类. 决策树的理解 熵的概念对理解决策树很重要 决策树做判断不是百分之百正确,它只是基于不确定性做最优判断. 熵就是用来描述不确定性的. 案例:找出共享单车用户中的推荐者 解析:求出哪一类人群更可能成为共享单车的推荐者.换句话说是推荐者与其他变量之间不…
时间序列: (或称动态数列)是指将同一统计指标的数值按其发生的时间先后顺序排列而成的数列.时间序列分析的主要目的是根据已有的历史数据对未来进行预测.(百度百科) 主要考虑的因素: 1.长期趋势(Long-term trend) : 时间序列可能相当稳定或随时间呈现某种趋势. 时间序列趋势一般为线性的(linear),二次方程式的 (quadratic)或指数函数(exponential function). 2.季节性变动(Seasonal variation) 按时间变动,呈现重复性行为的序列…
概率图模型 基于R语言 这本书中的第一个R语言程序 prior <- c(working =0.99,broken =0.01) likelihood <- rbind(working = c(good=0.99,bad=0.01),broken =c(good=0.6,bad=0.4)) data <- c("bad","bad","bad","bad") bayes <- function(prio…
A IMA模型是一种著名的时间序列预测方法,主要是指将非平稳时间序列转化为平稳时间序列,然后将因变量仅对它的滞后值以及随机误差项的现值和滞后值进行回归所建立的模型.ARIMA模型根据原序列是否平稳以及回归中所含部分的不同,包括移动平均过程(MA).自回归过程(AR).自回归移动平均过程(ARMA)以及ARIMA过程.其中ARIMA(p,d,q)称为差分自回归移动平均模型,AR是自回归, p为自回归项: MA为移动平均,q为移动平均项数,d为时间序列成为平稳时所做的差分次数. 通常的建立ARIMA…
Twitter开源的时序数据突变检测(BreakoutDetection),基于无参的E-Divisive with Medians (EDM)算法,比传统的E-Divisive算法快3.5倍以上,并且具有鲁棒统计性,就是你加入一些离群点或异常点,并不影响该算法的检测效果,不过最关键的还是无参特性,有时候调参真是件摸着石头过河的事. 它认为突变有两种方式: 1.Mean Shift:突然跳变,比如CPU从40%一跃跳变为60%,像佛教里讲的“顿宗” 2.Ramp Up:缓慢从一个平稳状态渐变到另…
基本概念 利用线性的方法,模拟因变量与一个或多个自变量之间的关系.自变量是模型输入值,因变量是模型基于自变量的输出值. 因变量是自变量线性叠加和的结果. 线性回归模型背后的逻辑——最小二乘法计算线性系数 最小二乘法怎么理解? 它的主要思想就是求解未知参数,使得理论值与观测值之差(即误差,或者说残差)的平方和达到最小.在这里模型就是理论值,点为观测值.使得拟合对象无限接近目标对象. 一元线性回归与多元线性回归 自变量只有一个的时候叫一元线性回归,自变量有多个时候叫多元线性回归. R语言实现 bik…
K-means聚类 将n个观测点,按一定标准(数据点的相似度),划归到k个聚类(用户划分.产品类别划分等)中. 重要概念:质心 K-means聚类要求的变量是数值变量,方便计算距离. 算法实现 R语言实现 k-means算法是将数值转换为距离,然后测量距离远近进行聚类的.不归一化的会使得距离非常远. 补充:scale归一化处理的意义 两个变量之间数值差别太大,比如年龄与收入的数值差别就很大. 步骤 第一步,确定聚类数量,即k的值 方法:肘部法则+实际业务需求 第二步,运行K-means模型 求出…
lavaan简明教程 [中文翻译版] 译者注:此文档原作者为比利时Ghent大学的Yves Rosseel博士,lavaan亦为其开发,完全开源.免费.我在学习的时候顺手翻译了一下,向Yves的开源精神致敬.此翻译因偷懒部分删减,但也有增加,有错误请留言 「转载请注明出处」 目录 lavaan简明教程 [中文翻译版] 目录 摘要 在开始之前 安装lavaan包 模型语法 例1:验证性因子分析(CFA) 例2:结构方程(SEM) 更多关于语法的内容 6.1 固定参数 6.2 初值 6.3 参数标签…
一,前提准备         1.R语言包:ggplot2包(绘图),recommenderlab包,reshape包(数据处理)         2.获取数据:大家可以在明尼苏达州大学的社会化计算研究中心官网上面下载这些免费数据集,网站链接为http://grouplens.org/datasets/movielens/,也可以通过网盘下载https://yunpan.cn/Oc6R9apvCnVXGc访问密码 e1af.这里包含了数据集和数据说明,该数据集是由943位用户对1682部电影的一…
背景:分析用户在世界杯期间讨论最多的话题. 思路:把用户关于世界杯的帖子拉下来.然后做中文分词+词频统计,最后将统计结果简单做个标签云.效果例如以下: 兴许:中文分词是中文信息处理的基础.分词之后.事实上还有特别多有趣的文本挖掘工作能够做.也是个知识发现的过程,以后有机会再学习下. ================================================== * 中文分词经常使用实现: 单机:R语言+Rwordseg分词包 (建议数据量<1G) 分布式:Hadoop+Sm…
分析航空公司现状 1.行业内竞争 民航的竞争除了三大航空公司之间的竞争之外,还将加入新崛起的各类小型航空公司.民营航空公司,甚至国外航空巨头.航空产品生产过剩,产品同质化特征愈加明显,于是航空公司从价格.服务间的竞争逐渐转向对客户的竞争. 2.行业外竞争 随着高铁.动车等铁路运输的兴建,航空公司受到巨大冲击. 航空公司客户数据说明 目前航空公司已积累了大量的会员档案信息和其乘坐航班记录. 以2014-03-31为结束时间,选取宽度为两年的时间段作为分析观测窗口,抽取观测窗口内有乘机记录的所有客户…
通常来说,我们可以从两个方面来提高一个预测模型的准确性:完善特征工程(feature engineering)或是直接使用Boosting算法.通过大量数据科学竞赛的试炼,我们可以发现人们更钟爱于Boosting算法,这是因为和其他方法相比,它在产生类似的结果时往往更加节约时间. Boosting算法有很多种,比如梯度推进(Gradient Boosting).XGBoost.AdaBoost.Gentle Boost等等.每一种算法都有自己不同的理论基础,通过对它们进行运用,算法之间细微的差别…
3.1 单组样本符号秩检验(Wilcoxon signed-rank test) 3.1.1 方法简介 此处使用的统计分析方法为美国统计学家Frank Wilcoxon所提出的非参数方法,称为Wilcoxon符号秩 (signed-rank)检验,当数据中仅有单一组样本时,可用这种方法检验数据的中位数是否大于.小于或等于某一特定数值.当你的样本数较大时(通常样本个数≧30的样本可视为样本数较大),建议改以单组样本均值t检验(one-sample t-test)检验总体均值.注:总体中位数经常和均…
2.1 单组样本均值t检验(One-sample t-test) 2.1.1 方法简介 t检验,又称学生t(student t)检验,是由英国统计学家戈斯特(William Sealy Gosset, 1876-1937)所提出,student则是他的笔名.t检验是一种检验总体均值的统计方法,当数据中仅含单组样本且样本数较大时(通常样本个数≧30的样本可视为样本数较大),可用这种方法来检验总体均值是否大于.小于或等于某一特定数值.当数据中仅含单组样本但样本数较小时(通常样本个数<30的样本可视为…
写在前面的话 按照正常的顺序,本文应该先讲一些线性回归的基本概念,比如什么叫线性回归,线性回规的常用解法等.但既然本文名为<从一个R语言案例学会线性回归>,那就更重视如何使用R语言去解决线性回归问题,因此本文会先讲案例. 线性回归简介 如下图所示,如果把自变量(也叫independent variable)和因变量(也叫dependent variable)画在二维坐标上,则每条记录对应一个点.线性回规最常见的应用场景则是用一条直线去拟和已知的点,并对给定的x值预测其y值.而我们要做的就是找出…
数据来源: R语言自带 Nile 数据集(尼罗河流量) 分析工具:R-3.5.0 & Rstudio-1.1.453 #清理环境,加载包 rm(list=ls()) library(forecast) library(tseries) #趋势查看 plot(Nile) #平稳性检验 #自相关图 acf(Nile) #偏相关图 pacf(Nile) #也可以直接用tsdisplay查看 tsdisplay(Nile) #单位根检验 adf.test(Nile) 从自相关图上看,自相关系数没有快速衰…
1.1 方法简介 描述性统计包含多种基本描述统计量,让用户对于数据结构可以有一个初步的认识.在此所提供之统计量包含: 基本信息:样本数.总和 集中趋势:均值.中位数.众数 离散趋势:方差(标准差).变异系数.全距(最小值.最大值).内四分位距(25%分位数.75%分位数) 分布描述:峰度系数.偏度系数 用户可选择多个变量同时进行计算,亦可选择分组变量进行多组别的统计量计算. 1.2 详细介绍 1.2.1 样本数和总和 1. R语言涉及的方法:length(x) 1.2.2 均值(Mean) 1.…
数据集——iris(R语言自带鸢尾花包) 一.scale函数 scale函数默认的是对制定数据做均值为0,标准差为1的标准化.它的两个参数center和scale: 1)center和scale默认为真,即T 2)center为真表示数据中心化 3)scale为真表示数据标准化 中心化:所谓数据的中心化是指数据集中的各项数据减去数据集的均值. 标准化:标准化就是数据在中心化之后再除以标准差.变换后值域为[0,1]. # 标准化与中心化data(iris) # 读入数据head(iris) #查看…
一.基于Sklearn的PCA代码实现 import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier from sklearn.decomposition import PCA digits =…
https://www.analyticsvidhya.com/blog/2015/08/common-machine-learning-algorithms/?spm=5176.100239.blogcont61037.12.0MhmIg https://yq.aliyun.com/articles/61037?spm=5176.100239.bloglist.110.rlSDN9 We are probably living in the most defining period of hu…
ID3决策树算法是基于信息增益来构建的,信息增益可以由训练集的信息熵算得,这里举一个简单的例子 data=[心情好 天气好  出门 心情好 天气不好 出门 心情不好 天气好 出门 心情不好 天气不好 不出门] 前面两列是分类属性,最后一列是分类 分类的信息熵可以计算得到:出门=3,不出门=1,总行数=4分类信息熵 = -(3/4)*log2(3/4)-(1/4)*log2(1/4) 第一列属性有两类,心情好,心情不好 心情好 ,出门=2,不出门=0,行数=2 心情好信息熵=-(2/2)*log2…
分三个部分:基础篇.实战篇.提高篇.基础篇介绍了数据挖掘的基本原理,实战篇介绍了一个个真实案例,通过对案例深入浅出的剖析,使读者在不知不觉中通过案例实践获得数据挖掘项目经验,同时快速领悟看似难懂的数据挖掘理论.高级篇介绍了基于R语言二次开发的数据挖掘应用软件,使读者体验到数据挖掘二次的开发的魅力. <R语言数据分析与挖掘实战(张良均等)>PDF,339页.配套数据与源代码. 网盘下载:http://106.13.73.98/abc/213…
摘要:R语言的知识体系并非语法这么简单,如果都不了R的全貌,何谈学好R语言呢.本文将展示介绍R语言的知识体系结构,并告诉读者如何才能高效地学习R语言. 最近遇到很多的程序员都想转行到数据分析,于是就开始学习R语言.总以为有了其他语言的编程背景,学习R语言就是一件很简单的事情,一味地追求速度,但不求甚解,有些同学说2周就能掌握R语言,但掌握的仅仅是R语言的语法,其实这只能算是入门. R语言的知识体系并非语法这么简单,如果都不了R的全貌,何谈学好R语言呢.本文将展示介绍R语言的知识体系结构,并告诉读…
R语言中文社区历史文章整理(类型篇)   R包: R语言交互式绘制杭州市地图:leafletCN包简介 clickpaste包介绍 igraph包快速上手 jiebaR,从入门到喜欢 Catterplots包,让你绘制不一样的图 今天再来谈谈REmap包 ggplot2你需要知道的都在这... R访问数据库管理系统(通过RODBC包和RMySQL包两种方式) NLP——自然语言处理(三)text2vec包 Rattle:数据挖掘的界面化操作 借助caret包实现特征选择的工作 R语言的高质量图形…
(此文章同时发表在本人微信公众号"dotNET每日精华文章",欢迎右边二维码来关注.) 题记:微软在收购R语言的开发商后,也独立发行或在自己的产品中集成了R语言,这里就介绍下它们包括开发工具RTVS. R是世界上最强大的统计计算.机器学习和图形化语言/平台,同时伴有一个众多用户.开发者和贡献者的全球化社区.R在我之前从事的环境分析领域也被广泛使用,据朋友说一个从环境专业毕业的博士就因为R用得熟还成功进入Facebook成为数据科学家. 众所周知,微软去年初收购了R语言的开发商Revol…
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:异常值处理一般分为以下几个步骤:异常值检测.异常值筛选.异常值处理. 其中异常值检测的方法主要有:箱型图.简单统计量(比如观察极值) 异常值处理方法主要有:删除法.插补法.替换法. 提到异常值不得不说一个词:鲁棒性.就是不受异常值影响,一般是鲁棒性高的数据,比较优质. 一.异常值检验 异常值大概包括缺失值.离群值.重复值,数据不一致.…
在数据挖掘的过程中,数据预处理占到了整个过程的60% 脏数据:指一般不符合要求,以及不能直接进行相应分析的数据 脏数据包括:缺失值.异常值.不一致的值.重复数据及含有特殊符号(如#.¥.*)的数据 数据清洗:删除原始数据集中的无关数据.重复数据.平滑噪声数据.处理缺失值.异常值等 缺失值处理:删除记录.数据插补和不处理 主要用到VIM和mice包 install.packages(c("VIM","mice")) 1.处理缺失值的步骤 步骤: (1)识别缺失数据:…
使用devtools安装github中的R源代码时,经常会出各种错误,索性搜了一下怎么在Windows下直接打包,网上的资料也是参差不齐,以下是自己验证通过的. 一.下载Rtools 下载地址:https://cran.r-project.org/bin/windows/Rtools/ 根据自己安装的R版本,下载兼容的Rtools即可,我下载的是Rtools35.exe 二.安装Rtools Windows下的安装都是傻瓜式的,一步步点确定即可,有两个地方需要注意: 2.1 安装路径 第一次安装…
这篇文章主要介绍了基于C++语言实现机动车违章处罚管理系统的相关资料,需要的朋友可以参考下 关键代码如下所示: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68…