http://blog.csdn.net/xiaowei_cqu/article/details/8069548 SIFT简介 Scale Invariant Feature Transform,尺度不变特征变换匹配算法,是由David G. Lowe在1999年(<Object Recognition from Local Scale-Invariant Features>)提出的高效区域检测算法,在2004年(<Distinctive Image Features from Scal…
http://blog.csdn.net/chenyusiyuan/article/details/8710462 OpenCV学习笔记(27)KAZE 算法原理与源码分析(一)非线性扩散滤波 2013-03-23 17:44 16963人阅读 评论(28) 收藏 举报  分类: 机器视觉(34)  版权声明:本文为博主原创文章,未经博主允许不得转载.   目录(?)[+]   KAZE系列笔记: OpenCV学习笔记(27)KAZE 算法原理与源码分析(一)非线性扩散滤波 OpenCV学习笔记…
原文地址:http://blog.csdn.net/xiaowei_cqu/article/details/8067881 尺度空间理论   自然界中的物体随着观测尺度不同有不同的表现形态.例如我们形容建筑物用“米”,观测分子.原子等用“纳米”.更形象的例子比如Google地图,滑动鼠标轮可以改变观测地图的尺度,看到的地图绘制也不同:还有电影中的拉伸镜头等等…… 尺度空间中各尺度图像的模糊程度逐渐变大,能够模拟人在距离目标由近到远时目标在视网膜上的形成过程.尺度越大图像越模糊.   为什么要讨论…
SIFT简介 Scale Invariant Feature Transform,尺度不变特征变换匹配算法,是由David G. Lowe在1999年(<Object Recognition from Local Scale-Invariant Features>)提出的高效区域检测算法,在2004年(<Distinctive Image Features from Scale-Invariant Keypoints>)得以完善. SIFT特征对旋转.尺度缩放.亮度变化等保持不变性…
百篇博客系列篇.本篇为: v26.xx 鸿蒙内核源码分析(自旋锁篇) | 当立贞节牌坊的好同志 | 51.c.h .o 进程通讯相关篇为: v26.xx 鸿蒙内核源码分析(自旋锁篇) | 当立贞节牌坊的好同志 | 51.c.h .o v27.xx 鸿蒙内核源码分析(互斥锁篇) | 比自旋锁丰满的互斥锁 | 51.c.h .o v28.xx 鸿蒙内核源码分析(进程通讯篇) | 九种进程间通讯方式速揽 | 51.c.h .o v29.xx 鸿蒙内核源码分析(信号量篇) | 谁在负责解决任务的同步 |…
<SIFT原理与源码分析>系列文章索引:http://www.cnblogs.com/tianyalu/p/5467813.html 由前一篇<方向赋值>,为找到的关键点即SIFT特征点赋了值,包含位置.尺度和方向的信息.接下来的步骤是关键点描述,即用用一组向量将这个关键点描述出来,这个描述子不但包括关键点,也包括关键点周围对其有贡献的像素点.用来作为目标匹配的依据(所以描述子应该有较高的独特性,以保证匹配率),也可使关键点具有更多的不变特性,如光照变化.3D视点变化等. SIFT…
<SIFT原理与源码分析>系列文章索引:http://www.cnblogs.com/tianyalu/p/5467813.html 由前一篇<关键点搜索与定位>,我们已经找到了关键点.为了实现图像旋转不变性,需要根据检测到的关键点局部图像结构为特征点方向赋值.也就是在findScaleSpaceExtrema()函数里看到的alcOrientationHist()语句: // 计算梯度直方图 ) + layer], Point(c1, r1), cvRound(SIFT_ORI_…
<SIFT原理与源码分析>系列文章索引:http://www.cnblogs.com/tianyalu/p/5467813.html 由前一步<DoG尺度空间构造>,我们得到了DoG高斯差分金字塔: 如上图的金字塔,高斯尺度空间金字塔中每组有五层不同尺度图像,相邻两层相减得到四层DoG结果.关键点搜索就在这四层DoG图像上寻找局部极值点. DoG局部极值点 寻找DoG极值点时,每一个像素点和它所有的相邻点比较,当其大于(或小于)它的图像域和尺度域的所有相邻点时,即为极值点.如下图所…
如果说SIFT算法中使用DOG对LOG进行了简化,提高了搜索特征点的速度,那么SURF算法则是对DoH的简化与近似.虽然SIFT算法已经被认为是最有效的,也是最常用的特征点提取的算法,但如果不借助于硬件的加速和专用图像处理器的配合,SIFT算法以现有的计算机仍然很难达到实时的程度.对于需要实时运算的场合,如基于特征点匹配的实时目标跟踪系统,每秒要处理8-24帧的图像,需要在毫秒级内完成特征点的搜索.特征矢量生成.特征矢量匹配.目标锁定等工作,这样SIFT算法就很难适应这种需求了.SURF借鉴了S…
上一篇文章 SURF算法与源码分析.上 中主要分析的是SURF特征点定位的算法原理与相关OpenCV中的源码分析,这篇文章接着上篇文章对已经定位到的SURF特征点进行特征描述.这一步至关重要,这是SURF特征点匹配的基础.总体来说算法思路和SIFT相似,只是每一步都做了不同程度的近似与简化,提高了效率. 1. SURF特征点方向分配 为了保证特征矢量具有旋转不变性,与SIFT特征一样,需要对每个特征点分配一个主方向.为些,我们需要以特征点为中心,以$6s$($s = 1.2 *L /9$为特征点…