kaggle是很多数据分析和机器学习初学者非常喜爱的数据科学竞赛平台. 这个平台上有很多接近现实业务场景的数据集,非常适合练手. 今天向大家推荐一个下载kaggle数据集的小工具--kaggleAPI 配置好之后,可以写个脚本,以后下载数据就方便多了. 安装 pip install kaggle 安装完毕之后执行 kaggle compeitions list 然后就会报错,提示没有kaggle.json文件,不用理他. 这一步主要是让其运行后生成配置文件夹,一般在C盘-用户-用户名下的.kag…
Kaggle数据集下载步骤: 安装Kaggle库: 注册Kaggle账户: 找到数据集,接受rules: 在My Account>>API中,点击Create New API Token,即可下载json文件: 将json文件剪切至kaggle文件夹中(或者覆盖旧的json文件): 下载数据. 踩坑点: 第3步中需要手机验证码,手机号前面要加上+860,否则收不到验证码: 每次下载数据,或者被403 – Forbidden时,都要走一遍步骤3.4.5: 第6步下载数据前,在cmd中输入kagg…
Titanic是kaggle上的一道just for fun的题,没有奖金,但是数据整洁,拿来练手最好不过啦. 这道题给的数据是泰坦尼克号上的乘客的信息,预测乘客是否幸存.这是个二元分类的机器学习问题,但是由于数据样本相对较少,在当时慌乱的情况下幸存者有一定的随机性,还是有一定挑战的.https://www.kaggle.com/c/titanic-gettingStarted/ 一 载入数据 首先,我们要先看一看数据,分析数据的一些较为直观的特征.代码使用numpy pandas和scikit…
https://blog.csdn.net/Tomxiaodai/article/details/80167765 kaggle上下载一下数据集必须手机验证,结果验证时一直提示错误输入的格式错误,试了网上的很多方法均失败. 0 准备工作:FQ推荐一款免费的工具 Psiphon 3: 链接:https://pan.baidu.com/s/1a1AzvChmrsaPG96z1368Jg 提取码:nlgs 第一步:验证界面下方有  contact us 2.按照提示继续找 3.界面会重新回到手机验证界…
数据分析之前首先要保证数据集的质量,missingno库提供了一个灵活易用的可视化工具来观察数据缺失情况,是基于matplotlib的,接受pandas数据源 快速开始 样例数据使用 NYPD Motor Vehicle Collisions Dataset 数据集. 运行下面命令获得数据 pip install quilt quilt install ResidentMario/missingno_data 加载数据到内存 from quilt.data.ResidentMario impor…
Kaggle API使用教程 https://www.kaggle.com 的官方 API ,可使用 Python 3 中实现的命令行工具访问. Beta 版 - Kaggle 保留修改当前提供的 API 功能的权利. 重要提示:使用 1.5.0 之前的 API 版本提交的比赛可能无法正常工作.如果您在提交竞赛时遇到困难,请使用 来检查您的版本kaggle --version.如果低于 1.5.0,请更新pip install kaggle --upgrade. 一.安装Kaggle环境并配置…
本次主要围绕Iris数据集进行一个简单的数据分析, 另外在数据的可视化部分进行了重点介绍. 环境 win8, python3.7, jupyter notebook 目录 1. 项目背景 2. 数据概览 3. 特征工程 4. 构建模型 正文 1. 项目背景 鸢尾属(拉丁学名:Iris L.), 单子叶植物纲, 鸢尾科多年生草本植物, 开的花大而美丽, 观赏价值很高. 鸢尾属约300种, Iris数据集中包含了其中的三种: 山鸢尾(Setosa),  杂色鸢尾(Versicolour), 维吉尼亚…
最近博主在做个 kaggle 竞赛,有个 Kernel 的数据探索分析非常值得借鉴,博主也学习了一波操作,搬运过来借鉴,原链接如下: https://www.kaggle.com/willkoehrsen/start-here-a-gentle-introduction 1 数据介绍 数据由Home Credit提供,该服务致力于向无银行账户的人群提供信贷(贷款).预测客户是否偿还贷款或遇到困难是一项重要的业务需求,Home Credit将在Kaggle上举办此类竞赛,以了解机器学习社区可以开展…
1. 引言 Kaggle是一个进行数据挖掘和数据分析在线竞赛网站, 成立于2010年. 与Kaggle合作的公司可以提供一个数据+一个问题, 再加上适当的奖励, Kaggle上的计算机科学家和数据科学家们(也可能是像我这样的菜鸟)将会领取任务, 提供自己的解决方案. 你在提交自己的解决方案后, 在截止日期之前都可以做出修改. 全世界的人都可以在Kaggle上提供自己的解决方案, 充分发挥了集体智慧. 但是作为一个新手, 要先明白其中的套路(一切都是套路). 万事入门难, 最稳妥的方法是先对以往的…
首先要给那些不熟悉 Pandas 的人简单介绍一下,Pandas 是 Python 生态系统中最流行的数据分析库.它能够完成许多任务,包括: 读/写不同格式的数据 选择数据的子集 跨行/列计算 寻找并填写缺失的数据 在数据的独立组中应用操作 重塑数据成不同格式 合并多个数据集 先进的时序功能 通过 matplotlib 和 seaborn 进行可视化操作 尽管 Pandas 功能强大,但它并不为整个数据科学流程提供完整功能.Pandas 通常是被用在数据采集和存储以及数据建模和预测中间的工具,作…