这里的高斯模糊采用的是论文<Recursive implementation of the Gaussian filter>里描述的递归算法. 仔细观察和理解上述公式,在forward过程中,n是递增的,因此,如果在进行forward之前,把in数据先完整的赋值给w,然后式子(9a)就可以变为:    w[n] = B w[n] + (b1 w[n-1] + b2 w[n-2] + b3 w[n-3]) / b0:     --------->     (1a) 在backward过程中…
小波学习之二(单层一维离散小波变换DWT的Mallat算法C++实现优化)   在上回<小波学习之一>中,已经详细介绍了Mallat算法C++实现,效果还可以,但也存在一些问题,比如,代码难于理解,同时出现了边界问题.在此,本文将重构代码,采用新的方法解决这些问题,同时也加深对小波变换的理解. MATLAB作为经典的数学工具,分析其小波变换dwt和idwt实现后发现真的很经典,学习参考价值很高.下面结合南京理工大学 谭彩铭的<解读matlab之小波库函数>及MATLAB小波工具包中…
Java 排序算法-冒泡排序及其优化 什么是冒泡排序 基本写法 优化后写法 终极版本 源码及测试 什么是冒泡排序 这里引用一下百度百科上的定义: 冒泡排序(Bubble Sort),是一种计算机科学领域的较简单的排序算法. 它重复地走访过要排序的元素列,依次比较两个相邻的元素,如果顺序(如从大到小.首字母从Z到A)错误就把他们交换过来.走访元素的工作是重复地进行直到没有相邻元素需要交换,也就是说该元素列已经排序完成. 这个算法的名字由来是因为越小的元素会经由交换慢慢"浮"到数列的顶端(…
原理不解释,直接上代码 代码中被注释的源程序可用于打印中间结果,检查运算是否正确. #include "mpi.h" #include <math.h> #include <stdio.h> #include <stdlib.h> #include <string.h> void scatter_matrix(int* fstream,int n1,int n2,int*Q,int root,int tag){ /*每个矩阵块的大小*/…
单源最短路径算法 时间复杂度O(N2) 优化后时间复杂度为O(MlogN)(M为图中的边数 所以对于稀疏图来说优化后更快) 不支持有负权的图 #include<iostream> using namespace std; const int maxn=1024; const int inf=1<<30; int n,m; int d[maxn]; int v[maxn]; int G[maxn][maxn]; void init() { for(int i=1;i<=n;i+…
朴素串匹配算法说明 串匹配算法最常用的情形是从一篇文档中查找指定文本.需要查找的文本叫做模式串,需要从中查找模式串的串暂且叫做查找串吧. 为了更好理解KMP算法,我们先这样看待一下朴素匹配算法吧.朴素串匹配算法是这样的,当模式串的某一位置失配时将失配位置的上一位置与查找串的该位置对齐再从头开始比较模式串的每一个位置.如下图所示.…
题目大意:求一个序列中不严格单调递增的子序列的最小数目(子序列之间没有交叉). 这题证明贪心法可行的时候,可以发现和求最长递减子序列的长度是同一个方法,只是思考的角度不同,具体证明并不是很清楚,这里就给出贪心法的解题过程. 首先很容易想到的就是对n长度数列进行n次遍历,每一次尽可能长地取出一个递增序列,显然这样最后取出的序列数目是最少的.但是这是一个n^2的算法,如果数据取极端的完全递减情况,很容易就能卡掉时间.Ps:这题的测试数据可能设计的并不是很严谨,这个简单的贪心法只要开一个记录已经取出序…
在很多场合需要高效率的肤色检测代码,本人常用的一个C++版本的代码如下所示: void IM_GetRoughSkinRegion(unsigned char *Src, unsigned char *Skin, int Width, int Height, int Stride) { ; Y < Height; Y++) { unsigned char *LinePS = Src + Y * Stride; // 源图的第Y行像素的首地址 unsigned char *LinePD = Ski…
最近随着对tarjan算法理解的加深,我发现用另外一种途径实现tarjan的方法,且可以省去DFN数组,大大节省了空间.经过大量测试,已经无误.以下将分阶段阐述进行优化的过程. 第一阶段 下面来说一下我做出此优化的思路.设任意两个节点为u,v.纵观整个tarjan算法,我们发现,DFN数组被调用的地方只有两个:在搜索中将DFN[u]与low[v]比较大小和在回溯中与low[u]比较是否相等.我在这里将DFN的职责分别分给low与flag. (一)在比较大小时将low[v],low[u]直接比较,…
SMO算法是一一种启发式算法,它的基本思路是如果所有变量的解的条件都满足最优化问题的KKT条件,那么这个最优化问题的解就得到了.因为KKT条件是该优化问题的充分必要条件. 整个SMO算法包括两个部分: 1)求解两个便令的二次归化的解析方法 2)选择变量的启发式方法. SMO算法的特点是不断地讲原二次规划问题分解为只有两个变量的二次规划子问题.并对子问题进行解析求解,直到所有变量满足KKT条件为止.这样通过启发式的方法得到原二次规划问题的最优解.因为子问题有解析解,所以每次求解子问题的解的速度都很…