Keras 实例 MNIST】的更多相关文章

import numpy from keras.datasets import mnist from keras.models import Sequential from keras.layers import Dense # 稠密层 from keras.layers import Dropout # Dropout将在训练过程中每次更新参数时按一定概率(rate)随机断开输入神经元,Dropout层用于防止过拟合. from keras.layers import Flatten # Fl…
介绍如何使用keras搭建一个多层感知机实现手写体识别及搭建一个神经网络最小的必备知识 import keras # 导入keras dir(keras) # 查看keras常用的模块 ['Input', 'Model', 'Sequential', '__builtins__', '__cached__', '__doc__', '__file__', '__loader__', '__name__', '__package__', '__path__', '__spec__', '__ver…
一. Tensorflow环境的安装 这里我们只讲CPU版本,使用 Anaconda 进行安装 a.首先我们要安装 Anaconda 链接:https://pan.baidu.com/s/1AxdGi93oN9kXCLdyxOMnRA 密码:79ig 过程如下: 第一步:点击next 第二步:I Agree 第三步:Just ME 第四步:自己选择一个恰当位置放它就好 第五步:建议只选择第二个 第六步:就直接install啦啦啦啦,然后你就可以上手万能库了 b.找到Anaconda prompt…
  仅仅为了学习Keras的使用,使用一个四层的全连接网络对MNIST数据集进行分类,网络模型各层结点数为:784: 256: 128 : 10:   使用整体数据集的75%作为训练集,25%作为测试集,最终在测试集上的正确率也就只能达到92%,太低了: precision recall f1-score support 0.0 0.95 0.96 0.96 1721 1.0 0.95 0.97 0.96 1983 2.0 0.91 0.90 0.91 1793 3.0 0.91 0.88 0.…
一.步骤: 导入包和读取数据 数据预处理 编码层和解码层的建立 + 构建模型 编译模型 训练模型 测试模型[只用编码层来画图] 二.代码: 1.导入包和读取数据 #导入相关的包 import numpy as np np.random.seed(1337) # for reproducibility from keras.datasets import mnist from keras.models import Model #采用通用模型 from keras.layers import De…
一.步骤: 导入包以及读取数据 设置参数 数据预处理 构建模型 编译模型 训练以及测试模型 二.代码: 1.导入包以及读取数据 #导入包 import numpy as np np.random.seed(1337) #设置之后每次执行代码,产生的随机数都一样 from tensorflow.examples.tutorials.mnist import input_data from keras.utils import np_utils from keras.models import Se…
一.步骤: 导入模块以及读取数据 数据预处理 构建模型 编译模型 训练模型 测试 二.代码: 导入模块以及读取数据 #导包 import numpy as np np.random.seed(1337) # from keras.datasets import mnist from keras.utils import np_utils # 主要采用这个模块下的to_categorical函数,将该函数转成one_hot向量 from keras.models import Sequential…
找到本地keras目录下的mnist.py文件 通常在这个目录下. ..\Anaconda3\Lib\site-packages\keras\datasets 下载mnist.npz文件到本地 下载链接如下. https://pan.baidu.com/s/1C3c2Vn-_616GqeEn7hQQ2Q 修改mnist.py文件为以下内容,并保存 from __future__ import absolute_import from __future__ import division from…
网络:两层卷积,两层全连接,一层softmax 代码: import numpy as np from keras.utils import to_categorical from keras import Sequential from keras import layers from keras import optimizers from keras.datasets import mnist from PIL import Image (train_x, train_y), (test_…
深度学习界的Hello Word程序:MNIST手写数字体识别 learn from(仍然是李宏毅老师<机器学习>课程):http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML17_2.html import numpy as np from keras.models import Sequential from keras.layers.core import Dense, Dropout, Activation from keras.layers im…