1.前言 这几种方法呢都是在求最优解中常常出现的方法,主要是应用迭代的思想来逼近.在梯度下降算法中.都是环绕下面这个式子展开: 当中在上面的式子中hθ(x)代表.输入为x的时候的其当时θ參数下的输出值,与y相减则是一个相对误差.之后再平方乘以1/2,而且当中 注意到x能够一维变量.也能够是多维变量,实际上最经常使用的还是多维变量. 我们知道曲面上方向导数的最大值的方向就代表了梯度的方向,因此我们在做梯度下降的时候.应该是沿着梯度的反方向进行权重的更新.能够有效的找到全局的最优解. 这个θ的更新过…
排版也是醉了见原文:http://www.cnblogs.com/maybe2030/p/5089753.html 在应用机器学习算法时,我们通常采用梯度下降法来对采用的算法进行训练.其实,常用的梯度下降法还具体包含有三种不同的形式,它们也各自有着不同的优缺点. 下面我们以线性回归算法来对三种梯度下降法进行比较. 1. 批量梯度下降法BGD 批量梯度下降法(Batch Gradient Descent,简称BGD)是梯度下降法最原始的形式,它的具体思路是在更新每一参数时都使用所有的样本来进行更新…
airfoil4755 下载 链接:https://pan.baidu.com/s/1YEtNjJ0_G9eeH6A6vHXhnA 提取码:dwjq 梯度下降 (Boyd & Vandenberghe, 2004) %matplotlib inline import numpy as np import torch import time from torch import nn, optim import math import sys sys.path.append('/home/kesci…
1.mini-batch梯度下降 在前面学习向量化时,知道了可以将训练样本横向堆叠,形成一个输入矩阵和对应的输出矩阵: 当数据量不是太大时,这样做当然会充分利用向量化的优点,一次训练中就可以将所有训练样本涵盖,速度也会较快.但当数据量急剧增大,达到百万甚至更大的数量级时,组成的矩阵将极其庞大,直接对这么大的的数据作梯度下降,可想而知速度是快不起来的.故这里将训练样本分割成较小的训练子集,子集就叫mini-batch.例如:训练样本数量m=500万,设置mini-batch=1000,则可以将训练…
梯度下降(GD)是最小化风险函数.损失函数的一种常用方法,随机梯度下降和批量梯度下降是两种迭代求解思路,下面从公式和实现的角度对两者进行分析,如有哪个方面写的不对,希望网友纠正. 下面的h(x)是要拟合的函数,J(theta)损失函数,theta是参数,要迭代求解的值,theta求解出来了那最终要拟合的函数h(theta)就出来了.其中m是训练集的记录条数,j是参数的个数. 1.批量梯度下降的求解思路如下: (1)将J(theta)对theta求偏导,得到每个theta对应的的梯度 (2)由于是…
梯度下降(GD)是最小化风险函数.损失函数的一种常用方法,随机梯度下降和批量梯度下降是两种迭代求解思路,下面从公式和实现的角度对两者进行分析,如有哪个方面写的不对,希望网友纠正. 下面的h(x)是要拟合的函数,J(theta)损失函数,theta是参数,要迭代求解的值,theta求解出来了那最终要拟合的函数h(theta)就出来了.其中m是训练集的记录条数,j是参数的个数. 1.批量梯度下降的求解思路如下: (1)将J(theta)对theta求偏导,得到每个theta对应的的梯度 (2)由于是…
批量梯度下降是一种对参数的update进行累积,然后批量更新的一种方式.用于在已知整个训练集时的一种训练方式,但对于大规模数据并不合适. 随机梯度下降是一种对参数随着样本训练,一个一个的及时update的方式.常用于大规模训练集,当往往容易收敛到局部最优解. 详细参见:Andrew Ng 的Machine Learning的课件(见参考1) 可能存在的改进 1)样本可靠度,特征完备性的验证 例如可能存在一些outlier,这种outlier可能是测量误差,也有可能是未考虑样本特征,例如有一件衣服…
  梯度下降法作为机器学习中较常使用的优化算法,其有着三种不同的形式:批量梯度下降(Batch Gradient Descent).随机梯度下降(Stochastic Gradient Descent)以及小批量梯度下降(Mini-Batch Gradient Descent).其中小批量梯度下降法也常用在深度学习中进行模型的训练.接下来,我们将对这三种不同的梯度下降法进行理解.   为了便于理解,这里我们将使用只含有一个特征的线性回归来展开.此时线性回归的假设函数为: \[ h_{\theta…
以上几个概念之前没有完全弄清其含义及区别,容易混淆概念,在本文浅析一下: 一.online learning vs batch learning online learning强调的是学习是实时的,流式的,每次训练不用使用全部样本,而是以之前训练好的模型为基础,每来一个样本就更新一次模型,这种方法叫做OGD(online gradient descent).这样做的目的是快速地进行模型的更新,提升模型时效性. online learning其实细分又可以分为batch模式和delta模式.bat…
梯度下降法 ​ 下面的h(x)是要拟合的函数,J(θ)损失函数,theta是参数,要迭代求解的值,theta求解出来了那最终要拟合的函数h(θ)就出来了.其中m是训练集的记录条数,j是参数的个数. 梯度下降法流程: (1)先对θ随机赋值,可以是一个全零的向量. (2)改变θ的值,使J(θ)按梯度下降的方向减少. 以上式为例: (1)对于我们的函数J(θ)求关于θ的偏导: (2)下面是更新的过程,也就是θi会向着梯度最小的方向进行减少.θi表示更新之前的值,-后面的部分表示按梯度方向减少的量,α表…