from:https://www.douban.com/note/284051363/?type=like 原帖发表在我的博客:http://alexkong.net/2013/06/introduction-to-auc-and-roc/ROC(Receiver Operating Characteristic)曲线和AUC常被用来评价一个二值分类器(binary classifier)的优劣,对两者的简单介绍见[这里](http://bubblexc.com/y2011/148/).这篇博文…
转自:https://www.douban.com/note/284051363/ ROC(Receiver Operating Characteristic)曲线和AUC常被用来评价一个二值分类器(binary classifier)的优劣,对两者的简单介绍见[这里](http://bubblexc.com/y2011/148/).这篇博文简单介绍ROC和AUC的特点,以及更为深入地,讨论如何作出ROC曲线图以及计算AUC. # ROC曲线需要提前说明的是,我们这里只讨论二值分类器.对于分类器…
原文:http://alexkong.net/2013/06/introduction-to-auc-and-roc/ 为什么使用ROC曲线 既然已经这么多评价标准,为什么还要使用ROC和AUC呢?因为ROC曲线有个很好的特性:当测试集中的正负样本的分布变化的时候,ROC曲线能够保持不变.在实际的数据集中经常会出现类不平衡(class imbalance)现象,即负样本比正样本多很多(或者相反),而且测试数据中的正负样本的分布也可能随着时间变化.下图是ROC曲线和Precision-Recall…
https://blog.csdn.net/u014313009/article/details/38944687 SIGIR的一篇推荐算法论文中提到用NDCG和AUC作为比较效果的指标,之前没了解过这两个指标,便查找相关概念,整理如下. 一.NDCG1.DCG       首先,介绍一下DCG.DCG的全称是Discounted Cumulative Gain,它是衡量搜索引擎算法的一个指标.搜索引擎一般采用PI(per item)的方式进行评测,即逐条对搜索结果进行等级的打分.比如在Goog…
https://www.jianshu.com/p/f154237924c4 (ROC讲解) https://blog.csdn.net/saltriver/article/details/74012163 (F-score 的讲解) https://www.jianshu.com/p/b20347b95919(ROC ,AUC更详细讲解)…
from:http://kubicode.me/2016/09/19/Machine%20Learning/AUC-Calculation-by-Python/ AUC介绍 AUC(Area Under Curve)是机器学习二分类模型中非常常用的评估指标,相比于F1-Score对项目的不平衡有更大的容忍性,目前常见的机器学习库中(比如scikit-learn)一般也都是集成该指标的计算,其计算原理可以参考这个ROC和AUC介绍以及如何计算AUC,但是有时候模型是单独的或者自己编写的,此时想要评…
要弄明白ks值和auc值的关系首先要弄懂roc曲线和ks曲线是怎么画出来的.其实从某个角度上来讲ROC曲线和KS曲线是一回事,只是横纵坐标的取法不同而已.拿逻辑回归举例,模型训练完成之后每个样本都会得到一个类概率值(注意是类似的类),把样本按这个类概率值排序后分成10等份,每一份单独计算它的真正率和假正率,然后计算累计概率值,用真正率和假正率的累计做为坐标画出来的就是ROC曲线,用10等分做为横坐标,用真正率和假正率的累计值分别做为纵坐标就得到两个曲线,这就是KS曲线.AUC值就是ROC曲线下放…
ROC和AUC介绍以及如何计算AUC from:http://alexkong.net/2013/06/introduction-to-auc-and-roc/ ROC(Receiver Operating Characteristic)曲线和AUC常被用来评价一个二值分类器(binary classifier)的优劣,对两者的简单介绍见这里.这篇博文简单介绍ROC和AUC的特点,以及更为深入地,讨论如何作出ROC曲线图以及计算AUC. ROC曲线 需要提前说明的是,我们这里只讨论二值分类器.对…
缘由 以下博客都是我在学习过程中看到的一些知识讲解非常好的博文,就不转载了,直接给出链接方便以后重复访问.有了自己的理解之后再重新整理资料发布吧 : ) sklearn系列 http://www.cnblogs.com/jasonfreak/tag/sklearn/ ROC和AUC介绍以及如何计算AUC http://alexkong.net/2013/06/introduction-to-auc-and-roc/ 机器学习中正则化项L1和L2的直观理解 http://blog.csdn.net…
Movielens and Netflix remain the most-used datasets. Other datasets such as Amazon, Yelp and CiteUlike are also frequently adopted. As for evaluation metrics, Root Mean Square Error (RMSE) and Mean Average Error (MAE) are usually used for rating pred…
WOE:信用评分卡模型中的变量离散化方法 2016-03-21 生存分析 在做回归模型时,因临床需要常常需要对连续性的变量离散化,诸如年龄,分为老.中.青三组,一般的做法是ROC或者X-tile等等.今天介绍一种在信用卡评分系统中常用的连续变量离散化方法.目的是给大家在临床数据分析中提供一种借鉴思路. 最初接触信用卡评分系统是在2013年SAS中国数据分析大赛总决赛上,题目是用历史数据建立一个信用卡评分系统,其中的变量离散化技术主要用到WOE(Weight of Evidence)翻译过来叫证据…
之前介绍了这么多分类模型的性能评价指标(<分类模型的性能评价指标(Classification Model Performance Evaluation Metric)>),那么到底应该选择哪些指标来评估自己的模型呢?答案是应根据应用场景进行选择. 查全率(Recall):recall是相对真实的情况而言的:假设测试集里面有100个正类,如果模型预测出其中40个是正类,那模型的recall就是40%.查全率也称为召回率,等价于灵敏性(Sensitivity)和真正率(True Positive…
相关评价指标在这片文章里有很好介绍 信息检索(IR)的评价指标介绍 - 准确率.召回率.F1.mAP.ROC.AUC:http://blog.csdn.net/marising/article/details/6543943 ROC曲线:接收者操作特征(receiveroperating characteristic) 比较分类模型的可视工具,曲线上各点反映着对同一信号刺激的感受性. 纵轴:真正率(击中率)true positive rate ,TPR,称为灵敏度.所有实际正例中,正确识别的正例…
一. ROC曲线概念 二分类问题在机器学习中是一个很常见的问题,经常会用到.ROC (Receiver Operating Characteristic) 曲线和 AUC (Area Under the Curve) 值常被用来评价一个二值分类器 (binary classifier) 的优劣,Sklearn中对这一函数给出了使用方法: sklearn.metrics.roc_curve(y_true, y_score, pos_label=None, sample_weight=None, d…
AUC(Area under Curve):Roc曲线下的面积,介于0.1和1之间.Auc作为数值可以直观的评价分类器的好坏,值越大越好. 首先AUC值是一个概率值,当你随机挑选一个正样本以及负样本,当前的分类算法根据计算得到的Score值将这个正样本排在负样本前面的概率就是AUC值,AUC值越大,当前分类算法越有可能将正样本排在负样本前面,从而能够更好地分类. 1. 什么是ROC曲线? ROC曲线是Receiver operating characteristic curve的简称,中文名为“…
混淆矩阵 介绍这些概念之前先来介绍一个概念:混淆矩阵(confusion matrix).对于 k 元分类,其实它就是一个k x k的表格,用来记录分类器的预测结果.对于常见的二元分类,它的混淆矩阵是 2x2 的. 假设要对 15 个人预测是否患病,使用 1 表示患病,使用 0 表示正常.预测结果如下: 预测值: 1 1 1 1 1 0 0 0 0 0 1 1 1 0 1 真实值: 0 1 1 0 1 1 0 0 1 0 1 0 1 0 0 将上面的预测结果转为混淆矩阵,如下: 上图展示了一个二…
本文主要介绍一下多分类下的ROC曲线绘制和AUC计算,并以鸢尾花数据为例,简单用python进行一下说明.如果对ROC和AUC二分类下的概念不是很了解,可以先参考下这篇文章:http://blog.csdn.net/ye1215172385/article/details/79448575 由于ROC曲线是针对二分类的情况,对于多分类问题,ROC曲线的获取主要有两种方法: 假设测试样本个数为m,类别个数为n(假设类别标签分别为:0,2,...,n-1).在训练完成后,计算出每个测试样本的在各类别…
1. 混淆矩阵 确定截断点后,评价学习器性能 假设训练之初以及预测后,一个样本是正例还是反例是已经确定的,这个时候,样本应该有两个类别值,一个是真实的0/1,一个是预测的0/1 TP(实际为正预测为正),FP(实际为负但预测为正),TN(实际为负预测为负),FN(实际为正但预测为负) 通过混淆矩阵我们可以给出各指标的值:查全率(召回率,recall):样本中的正例有多少被预测准确了,衡量的是查全率,预测对的正例数占真正的正例数的比率: 查全率=检索出的相关信息量 / 系统中的相关信息总量 = T…
文章目录 1.背景 2.ROC曲线 2.1 ROC名称溯源(选看) 2.2 ROC曲线的绘制 3.AUC(Area Under ROC Curve) 3.1 AUC来历 3.2 AUC几何意义 3.3 AUC计算 3.4 理解AUC的意义 3.4.1 从Mann-Whitney U test角度理解 3.4.2 从AUC计算公式角度理解 3.4.3 一句话介绍AUC 3.5 为什么用AUC 3.6 AUC的一般判断标准 1.背景 很多学习器是为测试样本产生一个实值或概率预测(比如比较简单的逻辑回…
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是机器学习专题的第18篇文章,我们来看看机器学习领域当中,非常重要的其他几个指标. 混淆矩阵 在上一篇文章当中,我们在介绍召回率.准确率这些概念之前,先讲了TP.FP.FN.和FP这几个值.我们再来简单地回顾一下,我们不能死记硬背这几个指标,否则很容易搞错,并且还容易搞混.我们需要从英文入手来理解,其中的T表示真,可以理解成预测正确,F表示假,也就是预测错误.而P和N表示positive和negative,也就是阴和阳,或者是0和1…
作为机器学习重要的评价指标,标题中的三个内容,在下面读书笔记里面都有讲: http://www.cnblogs.com/charlesblc/p/6188562.html 但是讲的不细,不太懂.今天又理解了一下.看了这篇文章: https://www.douban.com/note/247271147/?type=like 讲的很好. 都是基于这张图,先贴一下: PR Precision-Recall曲线,这个东西应该是来源于信息检索中对相关性的评价吧,precision就是你检索出来的结果中,…
准确率.精确率(查准率).召回率(查全率).F1值.ROC曲线的AUC值,都可以作为评价一个机器学习模型好坏的指标(evaluation metrics),而这些评价指标直接或间接都与混淆矩阵有关,前四者可以从混淆矩阵中直接计算得到,AUC值则要通过ROC曲线进行计算,而ROC曲线的横纵坐标又和混淆矩阵联系密切,所以在了解这些评价指标之前,先知道什么是混淆矩阵很有必要,也方便记忆. 1.混淆矩阵 对于一个二分类问题,我们可以得到如表 1所示的的混淆矩阵(confusion matrix): 表…
ROC 曲线:接收者操作特征曲线(receiver operating characteristic curve),是反映敏感性和特异性连续变量的综合指标,roc 曲线上每个点反映着对同一信号刺激的感受性. 对于分类器或者说分类算法,评价指标主要有precision,recall,F1 score等,以及这里要讨论的ROC和AUC.下图是一个 ROC 曲线的示例: 横坐标:Sensitivity,伪正类率(False positive rate, FPR),预测为正但实际为负的样本占所有负例样本…
只是为了复习一下,在评价分类器的性能好坏时,通常用recall和precision, PS:CNN做图像分类还是用了loss 和 accuracy 使用ROC的目的在于更好的(直观+量化)评价分类模型性能 举个例子:对于0-1两分类的情况,测试样本中有A类样本90个,B 类样本10个.分类器C1把所有的测试样本都分成了A类,分类器C2把A类的90个样本分对了70个,B类的10个样本分对了5个. 则C1的分类精度为 90%,C2的分类精度为75%.但是,显然C2更有用些.另外,在一些分类问题中犯不…
链接:https://www.zhihu.com/question/39840928/answer/146205830来源:知乎 一.混淆矩阵 混淆矩阵如图1分别用”0“和”1“代表负样本和正样本.FP代表实际类标签为”0“,但预测类标签为”1“的样本数量.其余,类似推理. 二.假正率和真正率 假正率(False Positive Rate,FPR)是实际标签为”0“的样本中,被预测错误的比例.真正率(True Positive Rate,TPR)是实际标签为”1“的样本中,被预测正确的比例.其…
一.ROC曲线 1.简介 ROC曲线全称是"受试者工作特征曲线 "(Receiver Operating Characteristic curve),又称为感受性曲线(Sensitivity curve). 它源于二战中用于敌机检测的雷达信号分析技术,二十世纪六七十年代开始被用于一些心理学.医学检测中,此后被引入机器学习领域. 得此名的原因在于曲线上各点反映着相同的感受性,它们都是对同一信号刺激的反应,只不过是在两种不同的判定标准下所得的结果而已. ROC曲线示意图如下图所示. ROC…
分类器各种各样,如何评价这些分类器的性能呢?(这里只考虑二元分类器,分类器的输出为概率值) 方法一:概率定义法 从正样本中随机选取元素记为x,从负样本中随机选取元素记为y,x的置信度大于y的概率 计算方法可以描述为 s=0 for x in 正例: s+=1/正例总数×置信度小于x的负例所占比例 return s 概率是用来定义问题的利器,如基尼系数. 方法二:正样本排名法 对全部样本按照置信度从高到低进行排序,排名依次记做1,2,3......全部正例的排名之和记为R,R越小表明分类器越准.…
AUC是指:从一堆样本中随机抽一个,抽到正样本的概率比抽到负样本的概率大的可能性! AUC是一个模型评价指标,只能用于二分类模型的评价,对于二分类模型,还有很多其他评价指标,比如logloss,accuracy,precision.如果你经常关注数据挖掘比赛,比如kaggle,那你会发现AUC和logloss基本是最常见的模型评价指标.为什么AUC和logloss比accuracy更常用呢?因为很多机器学习的模型对分类问题的预测结果都是概率,如果要计算accuracy,需要先把概率转化成类别,这…
本文整理了关于机器学习分类问题的评价指标——Confusion Matrix.ROC.AUC的概念以及理解. 混淆矩阵 在机器学习领域中,混淆矩阵(confusion matrix)是一种评价分类模型好坏的形象化展示工具.其中,矩阵的每一列表示的是模型预测的样本情况:矩阵的每一行表示的样本的真实情况. 举个经典的二分类例子: 混淆表格:                 混淆矩阵是除了ROC曲线和AUC之外的另一个判断分类好坏程度的方法,通过混淆矩阵我们可以很清楚的看出每一类样本的识别正误情况.…
ROC曲线: 横轴:假阳性率 代表将负例错分为正例的概率 纵轴:真阳性率 代表能将正例分对的概率 AUC是ROC曲线下面区域得面积. 与召回率对比: AUC意义: 任取一对(正.负)样本,把正样本预测为1的概率大于把负样本预测为1的概率的概率.基于上述,AUC反映的是分类器对样本的排序能力,如果进行随机预测,那么AUC的值应该为0.5.另外AUC对样本类别是否均衡并不敏感,所以不均衡样本通常使用AUC作为评价分类器的标准. 首先AUC值是一个概率值,当你随机挑选一个正样本以及一个负样本,当前的分…