<Hands-on ML with Sklearn & TF> Chapter 1 what is ml from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E. what problems to solve exist solution but a…
.caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px solid #000; } .table { border-collapse: collapse !important; } .table td, .table th { background-color: #fff !important; } .table-bordered th, .table-bordere…
.caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px solid #000; } .table { border-collapse: collapse !important; } .table td, .table th { background-color: #fff !important; } .table-bordered th, .table-bordere…
.caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px solid #000; } .table { border-collapse: collapse !important; } .table td, .table th { background-color: #fff !important; } .table-bordered th, .table-bordere…
.caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px solid #000; } .table { border-collapse: collapse !important; } .table td, .table th { background-color: #fff !important; } .table-bordered th, .table-bordere…
Chapter 3-Classification .caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px solid #000; } .table { border-collapse: collapse !important; } .table td, .table th { background-color: #fff !important; } .table-bo…
非常好的书,最近发现了pdf版本,链接:http://www.finelybook.com/hands-on-machine-learning-with-scikit-learn-and-tensorflow-concepts-tools-and-techniques-to-build-intelligent-systems/ 因为此pdf版本图片都不是很清楚,所以使用epub版本和出版社发布的sample版本里面的清楚一些的图替换了下... 链接: https://pan.baidu.com/…
Javascript中要实现跨域通信,主要有window.name,jsonp,document.domain,cors等方法.不过在H5中有一种新的方法postMessage可以安全实现跨域通信,并且使用简单. 要使用postMessage,首先得检查浏览器是否支持该方法,postMessage属于window对象,检测方法如下: if('postMessage' in window){ }else{ console.log('浏览器不支持postMessage'); } postMessag…
H5的地理位置API可以帮助我们来获取用户的地理位置,经纬度.海拔等,因此我们可以利用该API做天气应用.地图服务等. Geolocation对象是我们获取地理位置用到的对象. 首先判断浏览器是否支持该对象 if('geolocation' in navigator){ navigator.geolocation.getCurrentPosition(success,fail,options); }else{ alert('浏览器不支持获取地理位置!'); } 获取用户地理位置getCurren…
SPM做完统计后,statistical table中的FDRc实际上是在该p-uncorrected下,可以令FDR-correcred p<=0.05的最小cluster中的voxel数目: topological FDR和AlphaSim的步骤完全相同,只是两者在估计cluster大小的时候所用算法不同(AlphaSim:蒙特卡洛算法): 要用topological FDR,那么必须在spm_defaults中把topoFDR那个按钮打开,否则在statistical table中clus…
主要用于显示主要分类指标的文本报告,在报告中显示每个类的精确度.召回率.F1等信息 首先数据测试结果分为以下4种情况: TP:预测为正,实现为正 FP:预测为正,实现为负 FN:预测为负,实现为正 TN:预测为负,实现为负 准确率:所有识别为“1”的数据中,正确的比率是多少. eg.有100个样本被识别为“1”,但是其实只有80个结果是正确的,20个实际上是非“1”-->准确率=80% TP/(TP+FP) 召回率:所有样本为“1“的数据中,最后真正识别出为”1“的比率是多少. eg.有100个…
import tensorflow as tf # 22 scope (name_scope/variable_scope) from __future__ import print_function class TrainConfig: batch_size = 20 time_steps = 20 input_size = 10 output_size = 2 cell_size = 11 learning_rate = 0.01 class TestConfig(TrainConfig):…
传统的机器学习任务从开始到建模的一般流程是:获取数据 -> 数据预处理 -> 训练建模 -> 模型评估 -> 预测,分类.本文我们将依据传统机器学习的流程,看看在每一步流程中都有哪些常用的函数以及它们的用法是怎么样的.希望你看完这篇文章可以最为快速的开始你的学习任务. 1. 获取数据 1.1 导入sklearn数据集 sklearn中包含了大量的优质的数据集,在你学习机器学习的过程中,你可以通过使用这些数据集实现出不同的模型,从而提高你的动手实践能力,同时这个过程也可以加深你对理论…
声明:本博客整理自博友@zhouyong计算广告与机器学习-技术共享平台,尊重原创,欢迎感兴趣的博友查看原文. 写在前面 记得在<Pattern Recognition And Machine Learning>一书中的开头有讲到:“概率论.决策论.信息论3个重要工具贯穿着<PRML>整本书,虽然看起来令人生畏…”.确实如此,其实这3大理论在机器学习的每一种技法中,或多或少都会出现其身影(不局限在概率模型). <PRML>书中原话:”This chapter also…
线性回归:通过拟合线性模型的回归系数W =(w_1,…,w_p)来减少数据中观察到的结果和实际结果之间的残差平方和,并通过线性逼近进行预测. 从数学上讲,它解决了下面这个形式的问题:      LinearRegression()模型在Sklearn.linear_model下,他主要是通过fit(x,y)的方法来训练模型,其中x为数据的属性,y为所属类型.线性模型的回归系数W会保存在他的coef_方法中. 例如: >>> from sklearn import linear_model…
目录 1 使用sklearn进行数据挖掘 1.1 数据挖掘的步骤 1.2 数据初貌 1.3 关键技术2 并行处理 2.1 整体并行处理 2.2 部分并行处理3 流水线处理4 自动化调参5 持久化6 回顾7 总结8 参考资料 1 使用sklearn进行数据挖掘 1.1 数据挖掘的步骤 数据挖掘通常包括数据采集,数据分析,特征工程,训练模型,模型评估等步骤.使用sklearn工具可以方便地进行特征工程和模型训练工作,在<使用sklearn做单机特征工程>中,我们最后留下了一些疑问:特征处理类都有三…
网上有很多关于sklearn的学习教程,大部分都是简单的讲清楚某一方面,其实最好的教程就是官方文档. 官方文档地址:https://scikit-learn.org/stable/ (可是官方文档非常详细,同时许多人对官方文档的理解和结构上都不能很好地把握,我也打算好好学习sklearn,这可能是机器学习的神器),下面先简单介绍一下sklearn. 自2007年发布以来,scikit-learn已经成为Python重要的机器学习库了,scikit-learn简称sklearn,支持包括分类,回归…
用于连接两个矩阵: mn = array_ops.concat([a, d], 1) #  按照第二维度相接,shape1 [m,a] shape2 [m,b] ,concat_done shape : [m,a+b] tensorflow Rnn,Lstm,Gru,源码中是用以上的函数来链接Xt 和 Ht-1 的,两者的shape 分别是[batch_size, emb_size][batch_size,Hidden_size] 连接接后为的shape为:[batch_size,embeddi…
虽然说 TensorFlow 2.0 即将问世,但是有一些模块的内容却是不大变化的.其中就有 tf.saved_model 模块,主要用于模型的存储和恢复.为了防止学习记录文件丢失或者蠢笨的脑子直接遗忘掉这部分内容,在此做点简单的记录,以便将来查阅. 最近为了一个课程作业,不得已涉及到关于图像超分辨率恢复的内容,不得不准备随时存储训练的模型,只好再回过头来瞄一眼 TensorFlow 文档,真是太痛苦了. tf.saved_model 模块下面有很多文件和函数,精力有限,只好选择于自己有用的东西…
tf 中定义了 tf.app.flags.FLAGS ,用于接受从终端传入的命令行参数,相当于对Python中的命令行参数模块optpars(参考:python中处理命令行参数的模块optpars)做了一层封装.optpars中的参数类型是通过参数 "type=xxx" 定义的,tf中每个合法类型都有对应的 "DEFINE_xxx"函数.常用: tf.app.flags.DEFINE_string() :定义一个用于接收 string 类型数值的变量; tf.app…
.caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px solid #000; } .table { border-collapse: collapse !important; } .table td, .table th { background-color: #fff !important; } .table-bordered th, .table-bordere…
前言 本文接着上一篇继续来聊Tensorflow的接口,上一篇中用较低层的接口实现了线性模型,本篇中将用更高级的API--tf.estimator来改写线性模型. 还记得之前的文章<机器学习笔记2 - sklearn之iris数据集>吗?本文也将使用tf.estimator改造该示例. 本文代码都是基于API版本r1.4.本文中本地开发环境为Pycharm,在文中不再赘述. tf.estimator 内置模型 比起用底层API"较硬"的编码方式,tf.estimator的在…
看了几天word2vec的理论,终于是懂了一些.理论部分我推荐以下几篇教程,有博客也有视频: 1.<word2vec中的数学原理>:http://www.cnblogs.com/peghoty/p/3857839.html 2.刘建平:word2vec原理:https://www.cnblogs.com/pinard/p/7160330.html 3.吴恩达:<序列模型:自然语言处理与词嵌入> 理论看完了就要实战了,通过实战能加深对word2vec的理解.目前用word2vec算法…
[导读]TensorFlow 在 2015 年年底一出现就受到了极大的关注,经过一年多的发展,已经成为了在机器学习.深度学习项目中最受欢迎的框架之一.自发布以来,TensorFlow 不断在完善并增加新功能,直到在这次大会上发布了稳定版本的 TensorFlow V1.0.这次是谷歌第一次举办的TensorFlow开发者和爱好者大会,我们从主题演讲.有趣应用.技术生态.移动端和嵌入式应用多方面总结这次大会上的Submit,希望能对TensorFlow开发者有所帮助. TensorFlow:面向大…
1.cv2.resize(image, (image_size, image_size), 0, 0, cv2.INTER_LINEAR) 参数说明:image表示输入图片,image_size表示变化后的图片大小,0, 0表示dx和dy, cv2.INTER_LINEAR表示插值的方式为线性插值 2.image.get_shape[1:4].num_elements() 获得最后三个维度的大小之和 参数说明:image表示输入的图片 3. saver.save(sess, path, glob…
Numpy 和 scikit-learn 都是python常用的第三方库.numpy库可以用来存储和处理大型矩阵,并且在一定程度上弥补了python在运算效率上的不足,正是因为numpy的存在使得python成为数值计算领域的一大利器:sklearn是python著名的机器学习库,它其中封装了大量的机器学习算法,内置了大量的公开数据集,并且拥有完善的文档,因此成为目前最受欢迎的机器学习学习与实践的工具. 1. NumPy库 首先导入Numpy库 import numpy as np 1.1 nu…
ML神器:sklearn的快速使用 传统的机器学习任务从开始到建模的一般流程是:获取数据 -> 数据预处理 -> 训练建模 -> 模型评估 -> 预测,分类.本文我们将依据传统机器学习的流程,看看在每一步流程中都有哪些常用的函数以及它们的用法是怎么样的.希望你看完这篇文章可以最为快速的开始你的学习任务. 1. 获取数据 1.1 导入sklearn数据集 sklearn中包含了大量的优质的数据集,在你学习机器学习的过程中,你可以通过使用这些数据集实现出不同的模型,从而提高你的动手实践…
Spark新愿景:让深度学习变得更加易于使用   转自:https://www.jianshu.com/p/07e8200b7cea 前言 Spark成功的实现了当年的承诺,让数据处理变得更容易,现在,雄心勃勃的Databricks公司展开了一个新的愿景:让深度学习变得更容易. 当然牛好吹,也是要做些实际行动的,所有便有了spark-deep-learning项目.这件事情已经有很多人尝试做了,但显然太浅了,DB公司则做的更深入些. 原理 要做深度学习,肯定不能离开TensorFlow, MXN…
英文链接:https://mlflow.org/docs/latest/models.html 本文链接:https://www.cnblogs.com/CheeseZH/p/11946260.html 一个MLflow模型是打包机器学习模型的基本格式,可以方便的应用到不同下游工具,例如实时RESTful服务或者批量推理的Apache Spark.这个格式定义了一系列规范,让你的模型可以被不同的下游工具使用. 存储格式 每个MLflow模型都是一个包含各种文件的目录,根目录包含一个MLmode文…
CNN综述文章 的翻译 [2019 CVPR] A Survey of the Recent Architectures of Deep Convolutional Neural Networks 翻译 综述深度卷积神经网络架构:从基本组件到结构创新 目录 摘要    1.引言    2.CNN基本组件        2.1 卷积层        2.2 池化层        2.3 激活函数        2.4 批次归一化        2.5 Dropout        2.6 全连接层…