Applications Keras Applications are deep learning models that are made available alongside pre-trained weights. These models can be used for prediction, feature extraction, and fine-tuning. Weights are downloaded automatically when instantiating a mo…
萝卜招聘网  http://www.it9s.com  可以发布免费下载简历求职 ,免费!免费!全部免费!找工作看过来 免费下载简历 !萝卜招聘网  http://www.it9s.com  可以发布免费下载简历求职 ,免费!免费!全部免费!找工作看过来 免费下载简历 !萝卜招聘网  http://www.it9s.com  可以发布免费下载简历求职 ,免费!免费!全部免费!找工作看过来 免费下载简历 !萝卜招聘网  http://www.it9s.com  可以发布免费下载简历求职 ,免费!免…
YII2 console中写定时任务, 想使用其他模块的model, 在 console的yii.php 入口文件中引入其他模块的配置文件, 否者会出现model等命名空间找不到的问题. 还有, 命名空间如果是console\controller不生效, 可能是console的config中又引入了外层公共的config,被后者覆盖了.  所以换成app\controller的时候可以访问 console执行技巧: 命令行执行 执行 : php .\yii.php 看显示的,有可用方法列表: -…
When I use Keras to predict behind a web service, it occurred an error. and the error message is like flowing: self._make_predict_function()   File "/usr/local/lib/python3.4/dist-packages/keras/engine/training.py", line 679, in _make_predict_fun…
由于d3d9x属于DirectX9.0c扩展,默认不会随系统安装.因此要快速修复这个问题可以去微软官网下载D3D驱动补丁. http://www.microsoft.com/zh-cn/download/confirmation.aspx?id=35…
在terminal中执行以下命令:mvn install:install-file -DgroupId=ocx.GetRandom -DartifactId=GetRandom -Dversion=1.0.0-SNAPSHOT -Dpackaging=jar -Dfile=F:/ideawork/zz-pc-web/src/main/webapp/WEB-INF/lib/AESWithJCE.jar 在pom.xml中加入以下依赖,名字随意对上号就行 <dependency> <grou…
引自:http://blog.csdn.net/sinat_26917383/article/details/72857454 中文文档:http://keras-cn.readthedocs.io/en/latest/ 官方文档:https://keras.io/ 文档主要是以keras2.0. . Keras系列: 1.keras系列︱Sequential与Model模型.keras基本结构功能(一) 2.keras系列︱Application中五款已训练模型.VGG16框架(Sequent…
引自:http://blog.csdn.net/sinat_26917383/article/details/72859145 中文文档:http://keras-cn.readthedocs.io/en/latest/  官方文档:https://keras.io/  文档主要是以keras2.0. . . Keras系列: 1.keras系列︱Sequential与Model模型.keras基本结构功能(一) 2.keras系列︱Application中五款已训练模型.VGG16框架(Seq…
keras介绍与基本的模型保存 思维导图 1.keras网络结构 2.keras网络配置 3.keras预处理功能 模型的节点信息提取 config = model.get_config() 把model中的信息,solver.prototext和train.prototext信息提取出来 model = Model.from_config(config) 用信息建立新的模型对象 model = Sequential.from_config(config) 用信息建立新的Sequential模型…
I'm using keras 2.1.* with tensorflow 1.13.* backend. I save my model during training with .h5 format and after that I convert it into protobuf (.pb) model. Everything looks good during converting process, but the result of tensorflow model is a bit…
1 入门 2 多个输入和输出 3 共享层 考虑这样的一个问题:我们要判断连个tweet是否来源于同一个人. 首先我们对两个tweet进行处理,然后将处理的结构拼接在一起,之后跟一个逻辑回归,输出这两条tweet来自同一个人概率. 因为我们对两条tweet的处理是相同的,所以对第一条tweet的处理的模型,可以被重用来处理第二个tweet.我们考虑用LSTM进行处理. 假设我们的输入是两条 280*256的向量 首先定义输入: import keras from keras.layers impo…
1 入门 2 多个输入和输出 3 共享层 函数式模型有一个很好用的应用实例是:编写拥有多个输入和输出的模型.函数式模型使得在复杂网络中操作巨大的数据流变的简单. 我们实现下面这样的模型 from keras.layers import Input, Embedding, LSTM, Dense from keras.models import Model # Headline input: meant to receive sequences of 100 integers, between 1…
1 入门 2 多个输入和输出 3 共享层 最近在学习keras,它有一些实现好的特征提取的模型:resNet.vgg.而且是带权重的.用来做特诊提取比较方便 首先要知道keras有两种定义模型的方式: 1. 序列模型  The Sequential model 2. 函数式模型  the Keras functional 主要关注函数式模型: 函数式模型用来构造比较复杂的模型 ,比如说有多个输出的模型,有向非循环图,或者有共享层的模型 入门例子:密集连接的网络.可能这样的网络用Sequentia…
Keras的预训练模型地址:https://github.com/fchollet/deep-learning-models/releases 一个稍微讲究一点的办法是,利用在大规模数据集上预训练好的网络.这样的网络在多数的计算机视觉问题上都能取得不错的特征,利用这样的特征可以让我们获得更高的准确率. 1,使用预训练网络的 bottleneck 特征:一分钟达到90%的正确率 我们将使用VGG-16网络,该网络在 ImageNet数据集上进行训练,这个模型我们之前提到过了.因为 ImageNet…
小书匠深度学习 文章太长,放个目录: 1.优化函数的选择 2.损失函数的选择 2.2常用的损失函数 2.2自定义函数 2.1实践 2.2将损失函数自定义为网络层 3.模型的保存 3.1同时保持结构和权重 3.2模型结构的保存 3.3模型权重的保存 3.5选择网络层载入 4.训练历史的保存 4.1检测运行过程的参数 4.2保持训练过程得到的所有数据 5.陷阱:validation_split与shuffle 1.优化函数的选择 先写结论,后面再补上每个优化函数的详细解释: 如果你的数据很稀疏,那应…
VAEs最早由“Diederik P. Kingma and Max Welling, “Auto-Encoding Variational Bayes, arXiv (2013)”和“Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra, “Stochastic Backpropagation and Approximate Inference in Deep Generative Models,” arXiv (2014)”同时发…
本节主要学习Keras的应用模块 Application提供的带有预训练权重的模型,这些模型可以用来进行预测,特征提取和 finetune,上一篇文章我们使用了VGG16进行特征提取和微调,下面尝试一下其他的模型. 模型的预训练权重将下载到 ~/.keras/models/ 并在载入模型时自动载入,当然我们也可以下载到自己的目录下,但是需要去源码修改路径. 模型的官方下载路径:https://github.com/fchollet/deep-learning-models/releases Te…
简单地训练一个四层全连接网络. Ref: http://machinelearningmastery.com/tutorial-first-neural-network-python-keras/ 1. Load Data 数据简介:Pima Indians Diabetes Data Set 下载 :Data download --> 保存为:pima-indians-diabetes.csv from keras.models import Sequential from keras.lay…
软件环境(Windows): Visual Studio Anaconda CUDA MinGW-w64 conda install -c anaconda mingw libpython CNTK TensorFlow-gpu Keras-gpu Theano MKL CuDNN 参考书籍:谢梁 , 鲁颖 , 劳虹岚.Keras快速上手:基于Python的深度学习实战 Keras 简介 Keras 这个名字来源于希腊古典史诗<奥德赛>的牛角之门(Gate of Horn):Those tha…
catalogue . 引言 . 一些基本概念 . Sequential模型 . 泛型模型 . 常用层 . 卷积层 . 池化层 . 递归层Recurrent . 嵌入层 Embedding 1. 引言 Keras是一个高层神经网络库,Keras由纯Python编写而成并基Tensorflow或Theano 简易和快速的原型设计(keras具有高度模块化,极简,和可扩充特性) 支持CNN和RNN,或二者的结合 支持任意的链接方案(包括多输入和多输出训练) 无缝CPU和GPU切换 0x1: Kera…
\ 函数式模型接口 为什么叫"函数式模型",请查看"Keras新手指南"的相关部分 Keras的函数式模型为Model,即广义的拥有输入和输出的模型,我们使用Model来初始化一个函数式模型 from keras.models import Model from keras.layers import Input, Dense a = Input(shape=(32,)) b = Dense(32)(a) model = Model(inputs=a, output…
关于Keras模型 Keras有两种类型的模型,序贯模型(Sequential)和函数式模型(Model),函数式模型应用更为广泛,序贯模型是函数式模型的一种特殊情况. 两类模型有一些方法是相同的: model.summary():打印出模型概况,它实际调用的是keras.utils.print_summary model.get_config():返回包含模型配置信息的Python字典.模型也可以从它的config信息中重构回去 config = model.get_config() mode…
2018-07-19 全部谷歌渣翻加略微修改 大家将就的看哈 建议大佬们还是看看原文 点击收获原文 其中用到的示例文件 multi-output-classification 大家可以点击 下载 . 几周前,我们讨论了如何使用Keras和深度学习进行多标签分类. 今天我们将讨论一种称为多输出分类的更先进的技术. 那么,两者之间的区别是什么?你怎么跟踪学习所有这些东西呢? 虽然它可能有点令人困惑,特别是如果你不熟悉深度学习,这就是我如何区分它们的: 在多标签分类中,您的网络在网络末端只有一组完全连…
TensorFlow 高级接口使用简介(estimator, keras, data, experiment) TensorFlow 1.4正式添加了keras和data作为其核心代码(从contrib中毕业),加上之前的estimator API,现在已经可以利用Tensorflow像keras一样方便的搭建网络进行训练.data可以方便从多种来源的数据输入到搭建的网络中(利用tf.features可以方便的对结构化的数据进行读取和处理,比如存在csv中的数据,具体操作可以参考这篇文档):ke…
 先从sklearn说起吧,如果学习了sklearn的话,那么学习Keras相对来说比较容易.为什么这样说呢? 我们首先比较一下sklearn的机器学习大致使用流程和Keras的大致使用流程: sklearn的机器学习使用流程: from sklearn.模型簇 import 模型名 from sklearn.metrics import 评价指标 ''' 数据预处理及训练测试集分离提取''' myModel = 模型名称() # 对象初始化 myModel.fit(训练集x , 训练集y) #…
Keras是一个深度学习库,包含高效的数字库Theano和TensorFlow.是一个高度模块化的神经网络库,支持CPU和GPU. 本文学习的目的是学习如何加载CSV文件并使其可供Keras使用,如何使用Keras创建一个回归问题的神经网络模型,如何使用scikit-learn和Keras一起使用交叉验证来评估模型,如何进行数据准备以提高Keras模型的技能,如何使用Keras调整模型的网络拓扑. 前期准备之Keras的scikit-learn接口包装器 Git地址:https://github…
Keras有两种类型的模型,序贯模型(Sequential)和函数式模型(Model),函数式模型应用更为广泛,序贯模型是函数式模型的一种特殊情况. 两类模型有一些方法是相同的: model.summary():打印出模型概况,它实际调用的是keras.utils.print_summary model.get_config():返回包含模型配置信息的Python字典.模型也可以从它的config信息中重构回去 config = model.get_config() model = Model.…
Keras API 目前为止,介绍的神经网络模型都是通过Sequential模型来实现的.Sequential模型假设神经网络模型只有一个输入一个输出,而且模型的网络层是线性堆叠在一起的. 这是一个经过验证的假设;配置非常普遍,到目前为止已经能够使用Sequential模型类覆盖许多任务和实际应用程序.但在许多情况下,这套假设过于僵化.一些网络模型需要几个独立的输入,其他需要多个输出,并且一些网络在层之间具有内部分支,使得它们看起来像层的图形而不是线性堆叠层. 例如,某些任务需要多模式输入:它们…
引自:http://blog.csdn.net/sinat_26917383/article/details/72982230 之前在博客<keras系列︱图像多分类训练与利用bottleneck features进行微调(三)>一直在倒腾VGG16的fine-tuning,然后因为其中的Flatten层一直没有真的实现最后一个模块的fine-tuning. 看到github上有一份InceptionV3的fine-tuning并且可以实现. 我看到的keras微调的方式分为以下两种: fin…
引自:http://blog.csdn.net/sinat_26917383/article/details/72861152 中文文档:http://keras-cn.readthedocs.io/en/latest/  官方文档:https://keras.io/  文档主要是以keras2.0. 训练.训练主要就”练“嘛,所以堆几个案例就知道怎么做了. . . Keras系列: 1.keras系列︱Sequential与Model模型.keras基本结构功能(一) 2.keras系列︱Ap…