正态分布变换算法是一个配准算法,它应用于三维点的统计模型,使用标准优化技术来确定两个点云间的最优的匹配,因为其在配准过程中不利用对应点的特征计算和匹配,所以时间比其他方法快.下面是PCL官网上的一个例子,使用NDT配准算法将两块激光扫描数据点云匹配到一起. 先下载激光扫描数据集room_scan1.pcd 和 room_scan2.pcd. 这两块点云从不同的角度对同一个房间进行360°扫描得到.可以用CloudCompare(3D point cloud and mesh processing…
正态分布变换(NDT)算法是一个配准算法,它应用于三维点的统计模型,使用标准最优化技术来确定两个点云间的最优的匹配,因为其在配准过程中不利用对应点的特征计算和匹配,所以时间比其他方法快.下面的公式推导和MATLAB程序编写都参考论文:The Normal Distributions Transform: A New Approach to Laser Scan Matching 先回顾一下算法推导和实现过程中涉及到的几个知识点: 协方差矩阵 在概率论和统计中,协方差是对两个随机变量联合分布线性相…
title: [概率论]5-6:正态分布(The Normal Distributions Part I) categories: - Mathematic - Probability keywords: - The Normal Distributions toc: true date: 2018-03-29 14:15:47 Abstract: 本文介绍正态分布第一部分,关于正态分布的基本知识 Keywords: The Normal Distributions 开篇废话 要把原来的一课拆成…
Abstract 在这个文章里, 我们细致的比较了10种不同的3D LiDAR传感器, 用了一般的 Normal Distributions Transform (NDT) 算法. 我们按以下几个任务来分析表现和特性: 按照 mean map entropy 来衡量地图质量 6DOF 定位 1. Introduction Operational design domain: ODD 有几个关键的指标: 测量范围 测量精度 重复性? repeatablity point density scann…
title: [概率论]5-6:正态分布(The Normal Distributions Part III) categories: - Mathematic - Probability keywords: - The Normal Distributions - The Standard Normal Distribution - The Lognormal Distributions toc: true date: 2018-03-30 08:58:10 Abstract: 本文介绍正态分…
title: [概率论]5-6:正态分布(The Normal Distributions Part II) categories: - Mathematic - Probability keywords: - The Normal Distributions toc: true date: 2018-03-29 15:02:03 Abstract: 本文介绍正态分布的数学性质 Keywords: The Normal Distributions 开篇废话 一共要写四篇,哪来那么多废话. 首先我…
介绍 大多数激光匹配算法都是基于点或者线的特征匹配,该论文提出一种2D激光扫描匹配算法,方法类似于占据栅格,将2D平面分为一个个cell,对于每个cell,设定其一个正态分布,表示该网格测量到每个点的概率.则前后两帧激光转化为一些分段连续(可微)概率密度,通过牛顿法进行匹配,因此不需要建立任何点线对应.该算法在室内环境即使没有里程计数据也能表现很好.前后帧相互匹配转换为最大化前后帧对应点概率密度之和. 作者认为该算法的最大特点在于不需要建立对应点的匹配. NDT构建: 将2D空间分为一个个cel…
title: [概率论]5-10:二维正态分布(The Bivariate Normal Distributions) categories: - Mathematic - Probability keywords: - The Bivariate Normal Distributions toc: true date: 2018-04-05 22:03:55 Abstract: 本文介绍第一个多变量连续分布--双变量正态分布(本篇内有未证明定理,需要后续要补充 ) Keywords: The…
正态分布(Normal distribution)又名高斯分布(Gaussian distribution),是一个在数学.物理及project等领域都很重要的概率分布,在统计学的很多方面有着重大的影响力. 若随机变量X服从一个数学期望为μ.标准方差为σ2的高斯分布,记为: X∼N(μ,σ2), 则其概率密度函数为 正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度.因其曲线呈钟形,因此人们又常常称之为钟形曲线.我们通常所说的标准正态分布是μ = 0,σ = 1的正态分布(见右图中绿色曲…
原文地址:http://ghx0x0.github.io/2014/12/30/NDT-match/ By GH 发表于 12月 30 2014 目前三维配准中用的较多的是ICP迭代算法,需要提供一个较好的初值,同时由于算法本身缺陷,最终迭代结果可能会陷入局部最优.本文介绍的是另一种比较好的配准算法,NDT配准.这个配准算法耗时稳定,跟初值相关不大,初值误差大时,也能很好的纠正过来. 绪论: 采样: 3d点云数据在离相机近处点云密度大,远处密度小,所以在下采样时采用统一的采样方法还是会保留密度不…