首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
为什么CPU、GPU、FPGA都流行
2024-11-03
FPGA、GPU、CPU三者各自的优缺点是什么呢?
CPU: 英文全称:Central Processing Unit. 中文全称:中央处理器. 厂商:英特尔Intel. 功能:是一台计算机的运算核心和控制核心. 缺点:运算能力(最弱),核处理数(最少). 优点: 主频(最高)(3G.4G以上): 管理能力(最强),擅长管理和调度,比如数据读取,文件管理,人机交互等等. GPU: 英文全称:Graphics Processing Unit. 中文全称:图形处理器. 厂商:英伟达NVIDIA. 功能:是一种专门在个人电脑.工作站.游戏机和一些移动设
深入理解CPU和异构计算芯片GPU/FPGA/ASIC (上篇)
王玉伟,腾讯TEG架构平台部平台开发中心基础研发组资深工程师,专注于为数据中心提供高效的异构加速云解决方案.目前,FPGA已在腾讯海量图片处理以及检测领域已规模上线. 随着互联网用户的快速增长,数据体量的急剧膨胀,数据中心对计算的需求也在迅猛上涨.诸如深度学习在线预测.直播中的视频转码.图片压缩解压缩以及HTTPS加密等各类应用对计算的需求已远远超出了传统CPU处理器的能力所及.摩尔定律失效的今天,关注"新"成员(GPU\FPGA\ASIC)为数据中心带来的体系架构变革,为业务配上一台
GPU、CPU、FPGA
一.计算核心增加 二者都由寄存器.控制器.逻辑单元构成,但比例很大不同,决定了CPU擅长指令处理,函数调用上:GPU在数据处理(算数运算/逻辑运算)强力很多. NIVIDA基于Maxwell构架的GPU代号GM200的显示核心主要由4个图形处理集群(GPC ),16个流处理集群(SMM)和4个64bit显存控制器组成.每个流处理集群中包含了4个调度器(Warp),每个调度器又控制着32个逻辑计算核心(Core),Core是实现逻辑计算的基本单元. GPU处理数据过程: 从CPU得到数据处理指令.
深入理解CPU和异构计算芯片GPU/FPGA/ASIC (下篇)
3.2.1 CPU计算能力分析 这里CPU计算能力用Intel的Haswell架构进行分析,Haswell架构上计算单元有2个FMA(fused multiply-add),每个FMA可以对256bit数据在一个时钟周期中做一次乘运算和一次加运算,所以对应32bit单精度浮点计算能力为:(256bit/32bit) 2(FMA) 2(乘和加) = 32 SP FLOPs/cycle,即每个时钟周期可以做32个单精度浮点计算. CPU峰值浮点计算性能 = CPU核数 CPU频率 每周期执行的浮点操
CPU/GPU/TPU/NPU...XPU都是什么意思?
CPU/GPU/TPU/NPU...XPU都是什么意思? 现在这年代,技术日新月异,物联网.人工智能.深度学习等概念遍地开花,各类芯片名词GPU, TPU, NPU,DPU层出不穷......都是什么鬼?与CPU又是什么关系? HW发布了新款Mate 手机,里面有个叫什么NPU的,听起来很厉害,这是什么东西啊?就是人工智能处理器. 什么是人工智能处理器?和CPU有啥区别?和GPU有啥区别?不都带个PU吗? 本文通俗易懂的科普一下这些所谓的"XPU"! CPU CPU( Central
[转帖]双剑合璧:CPU+GPU异构计算完全解析
引用自:http://tech.sina.com.cn/mobile/n/2011-06-20/18371792199.shtml 这篇文章写的深入浅出,把异构计算的思想和行业趋势描述的非常清楚,难得一见的好文章.按捺不住转一下.^_^ 相对于串行计算,并行计算可以划分成时间并行和空间并行.时间并行即流水线技术,空间并行使用多个处理器执行并发计算,当前研究的主要是空间的并行问题.以程序和算法设计人员的角度看,并行计算又可分为数据并行和任务并行.数据并行把大的任务化解成若干个相同的子任务,处理
舌尖上的硬件:CPU/GPU芯片制造解析(高清)(组图)
一沙一世界,一树一菩提,我们这个世界的深邃全部蕴藏于一个个普通的平凡当中.小小的厨房所容纳的不仅仅是人们对味道的情感,更有推动整个世界前进的动力.要想理解我们的世界,有的时候只需要细细品味一下我们所喜爱的美食即可.正因为此,我们才规划了<舌尖上的硬件>这样一个系列栏目.通过对美食的品味和体会,我们可以更好地理解许多硬件相关的原理.内涵甚至是趣闻,我们所需要为此准备的,其实仅仅是一颗平和的心而已. 在上一期的<舌尖上的硬件>栏目中,我们第一次接触到了隐藏在食物背后的其与半导体业界的神
CPU GPU FPU TPU 及厂商
1,AMD 既做CPU又做显卡2,Inter 全球最大的CPU厂商,GPU,FPGA3,NVIDA 人工智能起家的公司,且一直在做,显卡最出名,CUDA让N卡胜了AMD CPU上 AMD - Inter显卡 AMD - NVIDA TPU 谷歌自研的专门用于深度学习的处理器 [Intel/AMD CPU世代表]架构/代号 世代 年代 制造工艺 架构/代号 类别 年代 制造工艺Coffee Lake 第八代酷睿 2017-2018年 14nm Zen+ 第二代锐龙 2018年 12nmKaby L
cpu gpu数据同步
https://developer.apple.com/documentation/metal/advanced_command_setup/cpu_and_gpu_synchronization dynamic vertex buffer通常每帧都要cpu更新里面的数据内容同时gpu就拿来画 1.顶点数据同步 并行这部分cpu gpu工作的解决方案 通常是 开多块vb让cpu gpu可以并行工作 但这个时候 这块资源gpu是否用完 cpu能不能拿来复用 (延迟三帧的情况下 ) 用信号量来同步
Cpu Gpu 内存 显存 数据流
[精]从CPU架构和技术的演变看GPU未来发展 http://www.pcpop.com/doc/0/521/521832_all.shtml 显存与纹理内存详解 http://blog.csdn.net/pizi0475/article/details/8739557 GPU 与CPU的作用协调,工作流程.GPU整合到CPU得好处 http://blog.csdn.net/maopig/article/details/6803141 双剑合璧:CPU+GPU异构计算完全解析 http://bj
Raspberry Pi B+ 定时向物联网yeelink上传CPU GPU温度
Raspberry Pi B+ 定时向物联网yeelink上传CPU GPU温度 硬件平台: Raspberry Pi B+ 软件平台: Raspberry 系统与前期安装请参见:树莓派(Rospberry Pi B+)到货亲测 :http://blog.csdn.net/xiabodan/article/details/38984617#0-qzone-1-66514-d020d2d2a4e8d1a374a433f596ad1440 更多内容关注http://blog.csdn.net
电容有什么作用?为什么cpu电源引脚都并联一个电容?
管理 随笔- 17 文章- 1 评论- 1 电容有什么作用?为什么cpu电源引脚都并联一个电容? 正文: 参考资料:http://blog.sina.com.cn/s/blog_7880d3350101dsf9.html:http://www.dzsc.com/data/2015-9-16/108785.html: http://www.21ic.com/jichuzhishi/analog/questions/2013-05-16/181478.html: 电容主要有以下四种作用,分
处理器 趣事 CPU/GPU/TPU/DPU/BPU
有消息称,阿里巴巴达摩院正在研发一款神经网络芯片——Ali-NPU,主要运用于图像视频分析.机器学习等AI推理计算.按照设计,这款芯片性能将是目前市面上主流CPU.GPU架构AI芯片的10倍,而制造成本和功耗仅为一半,其性价比超过40倍. 应用上,通过此款芯片的研发将会更好的落地在图像.视频识别.云计算等商业场景中.据阿里达摩院研究员骄旸介绍说:“CPU.GPU作为通用计算芯片,为处理线程逻辑和图形而设计,处理AI计算问题时功耗高,性价比低,在AI计算领域急需专用架构芯片解决上述问题.阿里巴巴此
three.js粒子效果(分别基于CPU&GPU实现)
前段时间做了一个基于CPU和GPU对比的粒子效果丢在学习WebGL的群里,技术上没有多作讲解,有同学反馈看不太懂GPU版本,干脆开一篇文章,重点讲解基于GPU开发的版本. 一.概况 废话不多说,先丢上demo,用移动设备更能明显感觉性能差异. 维护粒子位移.颜色.尺寸:GPU版本 CPU版本 维护粒子位移:GPU版本 CPU版本 结论:同时需要维护多种粒子特征变化时,GPU有明显优势.只是维护粒子位移时,GPU版本稍流畅,但优势并不明显.当然,这还得具体到设备,一些中低端Android机
通俗理解 CPU && GPU
CPU 力气大啥P事都能干,还要协调.GPU 上面那家伙的小弟,老大让他处理图形,这方面处理简单,但是量大,老大虽然能处理,可是老大只有那么几个兄弟,所以不如交给小弟处理了,小弟兄弟多,有数百至数千个,而且是专门只干这行和只能干这行. hhha!
CPU GPU设计工作原理《转》
我知道这非常长,可是,我坚持看完了.希望有幸看到这文章并对图形方面有兴趣的朋友,也能坚持看完.一定大有收获.毕竟知道它们究竟是怎么"私下勾搭"的.会有利于我们用程序来指挥它们....(这是我加上去的) 原文从这里開始: 要说到设计的复杂程度,那还是CPU了!这个不用讨论,非常easy的道理你看看显卡芯片的更新速度和CPU的更新速度就可见一斑了.还是简单说说他们的设计原理吧. CPU: 可是,如今我要问一句:"什么是CPU?"我相信大多数人并不知道什么是CPU.当然,
『TensorFlow2.0正式版教程』极简安装TF2.0正式版(CPU&GPU)教程
0 前言 TensorFlow 2.0,今天凌晨,正式放出了2.0版本. 不少网友表示,TensorFlow 2.0比PyTorch更好用,已经准备全面转向这个新升级的深度学习框架了. 本篇文章就带领大家用最简单地方式安装TF2.0正式版本(CPU与GPU),由我来踩坑,方便大家体验正式版本的TF2.0. 废话不多说现在正式开始教程. 1 环境准备 我目前是在Windows10上面,使用conda管理的python环境,通过conda安装cuda与cudnn(GPU支持),通过pip安装的t
[科普] CPU, GPU, TPU的区别
Google Cloud 原文链接:https://cloud.google.com/blog/products/ai-machine-learning/what-makes-tpus-fine-tuned-for-deep-learning 机器之心翻译链接:https://baijiahao.baidu.com/s?id=1610560990129941099&wfr=spider&for=pc 张量处理单元(TPU)是一种定制化的 ASIC 芯片,它由谷歌从头设计,并专门用于机器学习
CPU|MICGPU|FPGA|超算|Meta-data|
生物医学大数据: 收集数据后对数据的分析,如同看相,而对数据信息的挖掘可以看作是算命.这两个过程是基于算法和软件这类工具之上的. 在存储方面:在硬件上,为了Parallel computing的目的,刚开始选择的处理器是multiple core,之后选择many integrated core architecture(MIC:英特尔® 集成众核架构(英特尔® MIC 架构)产品为开发人员提供了一个关键优势:它们基于标准的现有编程工具和方法运行),之后选择GPU(大内存),之后是FPGA(电场
keras & tensorflow 列出可用GPU 和 切换CPU & GPU
列出可用GPU from tensorflow.python.client import device_lib print(device_lib.list_local_devices()) from keras import backend as K K.tensorflow_backend._get_available_gpus() 切换 import os os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID" # The GP
浅谈CPU,GPU,TPU,DPU,NPU,BPU
https://www.sohu.com/a/191538165_777155 A12宣传的每秒5万亿次运算,用计算机语言描述就是5Tops. 麒麟970 NPU,根据资料是 1.92Tops. 麒麟980 NPU,提升是970的120%,也就是1.92TopsX2.2=4.23Tops. A11大约0.6Tops,官方宣称8核也就是0.6X8=4.8约等于5Tops,没有虚假宣传. 其他soc没有NPU都是利用其他gpu进行神经网络计算,就不统计了. GTX1080是FP32的计算能力,也就是
热门专题
angular 元素 设置 计算高度
winfrom的DataGridView怎么使用
springboot 文件下载 乱码
mysqldump位置记录
ssm框架mapper文件中如何写模糊查询
paramiko 不能切换目录
mysql 排序查询上一条数据
苹果越狱 抓包https 自动修改替换相应
vsphere client许可证
mybatis 批量新增 哪条成功
tp5自定义每页显示数量
将3.1415转换为整型
Windows QT 安卓找不到设备
atcoder 数论提
在notpad 中添加图片
jdbctemplate 如何处理查询结果为空
java数字1转换成壹
java 连接 pgsql
mongodb 双字段去重
eureka 主动下线 被动