首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
拉普拉斯平滑(Laplace Smoothing)
2024-10-31
拉普拉斯平滑处理 Laplace Smoothing
背景:为什么要做平滑处理? 零概率问题,就是在计算实例的概率时,如果某个量x,在观察样本库(训练集)中没有出现过,会导致整个实例的概率结果是0.在文本分类的问题中,当一个词语没有在训练样本中出现,该词语调概率为0,使用连乘计算文本出现概率时也为0.这是不合理的,不能因为一个事件没有观察到就武断的认为该事件的概率是0. 拉普拉斯的理论支撑 为了解决零概率的问题,法国数学家拉普拉斯最早提出用加1的方法估计没有出现过的现象的概率,所以加法平滑也叫做拉普拉斯平滑. 假定训练样本很大时,每个分量x的计数加
拉普拉斯平滑(Laplacian smoothing)
概念 零概率问题:在计算事件的概率时,如果某个事件在观察样本库(训练集)中没有出现过,会导致该事件的概率结果是 $0$ .这是不合理的,不能因为一个事件没有观察到,就被认为该事件一定不可能发生(即该事件的概率为 $0$ ). 拉普拉斯平滑(Laplacian smoothing) 是为了解决零概率的问题. 法国数学家 拉普拉斯 最早提出用 加 $1$ 的方法,估计没有出现过的现象的概率. 理论假设:假定训练样本很大时,每个分量 $x$ 的计数加 $1$ 造成的估计概率变化可以忽略不计,但
Naive Bayes Algorithm And Laplace Smoothing
朴素贝叶斯算法(Naive Bayes)适用于在Training Set中,输入X和输出Y都是离散型的情况.如果输入X为连续,输出Y为离散,我们考虑使用逻辑回归(Logistic Regression)或者GDA(Gaussian Discriminant Algorithm). 试想,当我们拿到一个全新的输入X,求解输出Y的分类问题时,相当于,我们要求解概率p(Y|X)这里的X和Y都是向量,我们要根据p(Y|X)的结果,找出可能性最大的那个y值,进行输出.举个经典的垃圾邮件(Spam)分类例子
拉普拉斯(Laplace)分布
Laplace分布的概率密度函数的形式是这样的: $p(x) = \frac{1}{2 \lambda} e^{-\frac{\vert x –\mu \vert}{\lambda}}$ 一般$\mu$的取值为0,所以形式如下: $p(x) = \frac{1}{2 \lambda} e^{-\frac{\vert x \vert}{\lambda}}$ 它是由两个指数函数组成的,所以又叫做双指数函数分布(double exponential distribution) 均值和方差 均值的求
深度学习面试题28:标签平滑(Label smoothing)
目录 产生背景 工作原理 参考资料 产生背景 假设选用softmax交叉熵训练一个三分类模型,某样本经过网络最后一层的输出为向量x=(1.0, 5.0, 4.0),对x进行softmax转换输出为: 假设该样本y=[0, 1, 0],那损失loss: 按softmax交叉熵优化时,针对这个样本而言,会让0.721越来越接近于1,因为这样会减少loss,但是这有可能造成过拟合.可以这样理解,如果0.721已经接近于1了,那么网络会对该样本十分“关注”,也就是过拟合.我们可以通过标签平滑的方式解决.
NLP相关问题中文本数据特征表达初探
1. NLP问题简介 0x1:NLP问题都包括哪些内涵 人们对真实世界的感知被成为感知世界,而人们用语言表达出自己的感知视为文本数据.那么反过来,NLP,或者更精确地表达为文本挖掘,则是从文本数据出发,来尽可能复原人们的感知世界,从而表达真实世界的过程.这里面就包括如图中所示的模型和算法,包括: ()文本层:NLP文本表示: ()文本-感知世界:词汇相关性分析.主题模型.意见情感分析等: ()文本-真实世界:基于文本的预测等: 显而易见,文本表示在文本挖掘中有着绝对核心的地位,是其他所有模型建构
生成学习算法(Generative Learning algorithms)
一.引言 前面我们谈论到的算法都是在给定\(x\)的情况下直接对\(p(y|x;\theta)\)进行建模.例如,逻辑回归利用\(h_\theta(x)=g(\theta^T x)\)对\(p(y|x;\theta)\)建模,这类算法称作判别学习算法. 考虑这样一个分类问题,我们根据一些特征来区别动物是大象\((y=1)\)还是狗\((y=0)\).给定了这样一个训练集,逻辑回归或感知算法要做的就是去找到一个决策边界,将大象和狗的样本分开来.可以换个思路,首先根据大象的特征来学习出一个大象的模型
NLP问题特征表达基础 - 语言模型(Language Model)发展演化历程讨论
1. NLP问题简介 0x1:NLP问题都包括哪些内涵 人们对真实世界的感知被成为感知世界,而人们用语言表达出自己的感知视为文本数据.那么反过来,NLP,或者更精确地表达为文本挖掘,则是从文本数据出发,来尽可能复原人们的感知世界,从而表达真实世界的过程.这里面就包括如图中所示的模型和算法,包括: ()文本层:NLP文本表示: ()文本-感知世界:词汇相关性分析.主题模型.意见情感分析等: ()文本-真实世界:基于文本的预测等: 显而易见,文本表示在文本挖掘中有着绝对核心的地位,是其他所有模型建构
记intel杯比赛中各种bug与debug【其五】:朴素贝叶斯分类器的实现和针对性的优化
咱这个项目最主要的就是这个了 贝叶斯分类器用于做可以统计概率的二元分类 典型的例子就是垃圾邮件过滤 理论基础 对于贝叶斯算法,这里附上两个链接,便于理解: 朴素贝叶斯分类器的应用-阮一峰的网络日志 基于朴素贝叶斯到中文垃圾邮件分类器 朴素贝叶斯分类器和一般的贝叶斯分类器有什么区别?-知乎 这里我们用朴素贝叶斯分类,假设所有特征都彼此独立,贝叶斯公式是这样 \[ P(A|B)=\frac{P(B|A)P(A)}{P(B)}=\frac{P(B|A)P(A)}{P(B|A)+P(B|\bar{A})
【机器学习速成宝典】模型篇05朴素贝叶斯【Naive Bayes】(Python版)
目录 先验概率与后验概率 条件概率公式.全概率公式.贝叶斯公式 什么是朴素贝叶斯(Naive Bayes) 拉普拉斯平滑(Laplace Smoothing) 应用:遇到连续变量怎么办?(多项式分布,高斯分布) Python代码(sklearn库) 先验概率与后验概率 引例 想象有 A.B.C 三个不透明的碗倒扣在桌面上,已知其中有(且仅有)一个瓷碗下面盖住一个鸡蛋.此时请问,鸡蛋在 A 碗下面的概率是多少?答曰 1/3. 现在发生一件事:有人揭开了 C 碗,发现 C 碗下面没有蛋.此时再问:鸡
详解基于朴素贝叶斯的情感分析及 Python 实现
相对于「 基于词典的分析 」,「 基于机器学习 」的就不需要大量标注的词典,但是需要大量标记的数据,比如: 还是下面这句话,如果它的标签是: 服务质量 - 中 (共有三个级别,好.中.差) ╮(╯-╰)╭,其是机器学习,通过大量已经标签的数据训练出一个模型, 然后你在输入一条评论,来判断标签级别 宁馨的点评 国庆活动,用62开头的信用卡可以6.2元买一个印有银联卡标记的冰淇淋, 有香草,巧克力和抹茶三种口味可选,我选的是香草口味,味道很浓郁. 另外任意消费都可以10元买两个马卡龙,个头虽不是很大
一步步教你轻松学朴素贝叶斯模型算法Sklearn深度篇3
一步步教你轻松学朴素贝叶斯深度篇3(白宁超 2018年9月4日14:18:14) 导读:朴素贝叶斯模型是机器学习常用的模型算法之一,其在文本分类方面简单易行,且取得不错的分类效果.所以很受欢迎,对于朴素贝叶斯的学习,本文首先介绍理论知识即朴素贝叶斯相关概念和公式推导,为了加深理解,采用一个维基百科上面性别分类例子进行形式化描述.然后通过编程实现朴素贝叶斯分类算法,并在屏蔽社区言论.垃圾邮件.个人广告中获取区域倾向等几个方面进行应用,包括创建数据集.数据预处理.词集模型和词袋模型.朴素贝叶斯模
Python机器学习算法 — 朴素贝叶斯算法(Naive Bayes)
朴素贝叶斯算法 -- 简介 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法.最为广泛的两种分类模型是决策树模型(Decision Tree Model)和朴素贝叶斯模型(Naive Bayesian Model,NBM). 和决策树模型相比,朴素贝叶斯分类器(Naive Bayes Classifier,或 NBC)发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率.同时,NBC模型所需估计的参数很少,对缺失数据不太敏感,算法也比较简单. 理论上,N
统计学习1:朴素贝叶斯模型(Numpy实现)
模型 生成模型介绍 我们定义样本空间为\(\mathcal{X} \subseteq \mathbb{R}^n\),输出空间为\(\mathcal{Y} = \{c_1, c_2, ..., c_K\}\).\(\textbf{X}\)为输入空间上的随机向量,其取值为\(\textbf{x}\),满足\(\textbf{x} \in \mathcal{X}\):\(Y\)为输出空间上的随机变量,设其取值为\(y\),满足\(y \in \mathcal{Y}\).我们将容量为\(m\)的训练样本
[置顶] 生成学习算法、高斯判别分析、朴素贝叶斯、Laplace平滑——斯坦福ML公开课笔记5
转载请注明:http://blog.csdn.net/xinzhangyanxiang/article/details/9285001 该系列笔记1-5pdf下载请猛击这里. 本篇博客为斯坦福ML公开课第五个视频的笔记,主要内容包括生成学习算法(generate learning algorithm).高斯判别分析(Gaussian DiscriminantAnalysis,GDA).朴素贝叶斯(Navie Bayes).拉普拉斯平滑(Laplace Smoothing).
高斯拉普拉斯算子(Laplace of Gaussian)
高斯拉普拉斯(Laplace of Gaussian) kezunhai@gmail.com http://blog.csdn.net/kezunhai Laplace算子作为一种优秀的边缘检测算子,在边缘检测中得到了广泛的应用.该方法通过对图像求图像的二阶倒数的零交叉点来实现边缘的检测,公式表示如下: 由于Laplace算子是通过对图像进行微分操作实现边缘检测的,所以对离散点和噪声比较敏感.于是,首先对图像进行高斯卷积滤波进行降噪处理,再采用Laplace算子进行边缘检测,就可以提高算子对噪声
从零开始一起学习SLAM | 点云平滑法线估计
点击公众号"计算机视觉life"关注,置顶星标更快接收消息! 本文编程练习框架及数据获取方法见文末获取方式 菜单栏点击"知识星球"查看「从零开始学习SLAM」一起学习交流 点云滤波后为什么还需要平滑? 小白:师兄,师兄,上次你说的点云滤波我学会啦,下一步怎么把点云变成网格啊? 师兄:滤波只是第一步,在网格化前我们还需要对滤波后的点云进行平滑(smoothing) 小白:不是已经滤波了吗?怎么还要平滑啊?滤波和平滑不一样吗? 师兄:确实不太一样.我们用RGB-D,激光
拉普拉斯分布,高斯分布,L1 L2
之前那篇文章里提到,L1其实是加上服从拉普拉斯分布的先验,L2是加上服从高斯分布的先验: http://www.cnblogs.com/charlesblc/p/7977732.html 那么记住拉普拉斯的公式和高斯的公式: 拉普拉斯(Laplace) 高斯(Gaussian)分布
R Language
向量定义:x1 = c(1,2,3); x2 = c(1:100) 类型显示:mode(x1) 向量长度:length(x2) 向量元素显示:x1[c(1,2,3)] 多维向量:multi-dimensional vector:rbind(x1,x2); cbind(x1,x2) > x = c(1,2,3,4,5,6) > y = c(6,5,4,3,2,1) > z = rbind(x,y) > z [,1] [,2] [,3] [,4] [,5] [,6] x 1 2 3 4
Stanford大学机器学习公开课(五):生成学习算法、高斯判别、朴素贝叶斯
(一)生成学习算法 在线性回归和Logistic回归这种类型的学习算法中我们探讨的模型都是p(y|x;θ),即给定x的情况探讨y的条件概率分布.如二分类问题,不管是感知器算法还是逻辑回归算法,都是在解空间中寻找一条直线从而把两种类别的样例分开,对于新的样例,只要判断在直线的哪一侧即可:这种直接对问题求解的方法可以称为判别学习方法. 而生成学习算法则是对两个类别分别进行建模,用新的样例去匹配两个模板,匹配度较高的作为新样例的类别,比如分辨大象(y=1)和狗(y=0),首先,观察大象,然后建立一
热门专题
java读取数据库并存入数组
CESIUM部署和发布
react import 配置路径别名
ckeditor5 支持java json高亮
matlab高斯消去法的LU分解求
java idea修改变量名快捷键
centos bamboo破解版
Idapython 输出函数参数
element-ui 地址
jmeter的csv数据文件设置
inno setup 覆盖安装先卸载
source insight git插件
.net ElasticClient 时间段查询
solr集群 总是宕机 原因
vue 多层双层全选
提高quartus编译速度
edtFTPj的put方法超时
queryForList 返回查询时间
java获取本年的周数函数
android 防锁屏 delphi