Receptive Field Block Net for Accurate and Fast Object Detection 作者:Songtao Liu, Di Huang*, and Yunhong Wang Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University, Beijing 100191, China fliusongtao, dhuang, yhwangg@bu
一.简介 官方网站:http://cocodataset.org/全称:Microsoft Common Objects in Context (MS COCO)支持任务:Detection.Keypoints.Stuff.Panoptic.Captions说明:COCO数据集目前有三个版本,即2014.2015和2017,其中2015版只有测试集,其他两个有训练集.验证集和测试集.(本贴内容来源于官网+个人理解与描述) 二.数据集下载 方法一:直接官网下载(需要FQ).方法二:本人已把官网数据
1.首先从官方下载mask_rcnn源码https://github.com/matterport/Mask_RCNN 2.首先将demo.ipynb转换成demo.py,这里我顺便更改为适用于我自己数据集: import os import sys import random import math import numpy as np import skimage.io import matplotlib import matplotlib.pyplot as plt import cv2
原文链接 本文修正部分错误. 以下是精心收集的一些非常好的开放数据集,也是做 AI 研究不容错过的数据集. 标签解释 [经典]这些是在 AI 领域中非常著名.众所周知的数据集.很少有研究者或工程师没有听说过它们. [有用]这些是更加接近现实世界的.精心设计的数据集.而且,这些数据集通常在产品和研发两方面都有用. [学术]这些是在机器学习和 AI 的学术研究中通常作为基准或基线使用的数据集.无论好坏,研究人员都使用这些数据集来验证算法. [陈旧]这些数据集,无论是否实用,已经有相当长历史了. 计算