网易公开课,第4课 notes,http://cs229.stanford.edu/notes/cs229-notes1.pdf 前面介绍一个线性回归问题,符合高斯分布 一个分类问题,logstic回归,符合伯努利分布 也发现他们有些相似的地方,其实这些方法都是一个更广泛的模型族的特例,这个模型族称为,广义线性模型(Generalized Linear Models,GLMs) The exponential family 为了介绍GLMs,先需要介绍指数族分布(exponential fami
NB: 因为softmax,NN看上去是分类,其实是拟合(回归),拟合最大似然. 多分类参见:[Scikit-learn] 1.1 Generalized Linear Models - Logistic regression & Softmax 感知机采用的是形式最简单的梯度 Perceptron and SGDClassifier share the same underlying implementation.In fact, Perceptron() is equivalent to S
二分类:Logistic regression 多分类:Softmax分类函数 对于损失函数,我们求其最小值, 对于似然函数,我们求其最大值. Logistic是loss function,即: 在逻辑回归中,选择了 “对数似然损失函数”,L(Y,P(Y|X)) = -logP(Y|X). 对似然函数求最大值,其实就是对对数似然损失函数求最小值. Logistic regression, despite its name, is a linear model for classification
Here is the note for lecture three. the linear model Linear model is a basic and important model in machine learning. 1. input representation The data we get usually needs some changes, most of them is the input data. In linear model,
Generic recipe for data analysis with general linear model Courtesy of David Schneider State population, and conditions for taking sample. Construct the model: (a) state the response variable; (b) state the explanatory variable(s); (c) state type of
背景:We developed a cell-cycle scoring approach that uses expression data to compute an index for every cell that scores the cell according to its expression of cell-cycle genes. In brief, our approach proceeded through four steps. (A) We reduced dimen