首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
清华集训2014】玛里苟斯
2024-11-10
uoj#36. 【清华集训2014】玛里苟斯(线性基+概率期望)
传送门 为啥在我看来完全不知道为什么的在大佬们看来全都是显然-- 考虑\(k=1\)的情况,如果序列中有某一个\(a_j\)的第\(i\)位为\(1\),那么\(x\)的第\(i\)位为\(1\)的概率就是\(\frac{1}{2}\) 证:把\(a_j\)拿出来,那么剩下的里面选出的子集不管是什么情况,\(a_j\)放进去或不放肯定有一种能使\(x\)的第\(i\)位为\(1\),且另一种使\(x\)的第\(i\)位为\(0\),那么概率就是\(\frac{1}{2}\) 然后是\(k=2\)
uoj 41 【清华集训2014】矩阵变换 婚姻稳定问题
[清华集训2014]矩阵变换 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://uoj.ac/problem/41 Description 给出一个 N 行 M 列的矩阵A, 保证满足以下性质: M>N. 矩阵中每个数都是 [0,N] 中的自然数. 每行中, [1,N] 中每个自然数都恰好出现一次.这意味着每行中 0 恰好出现 M−N 次. 每列中,[1,N] 中每个自然数至多出现一次. 现在我们要在每行中选取一个非零数,
AC日记——【清华集训2014】奇数国 uoj 38
#38. [清华集训2014]奇数国 思路: 题目中的number与product不想冲: 即为number与product互素: 所以,求phi(product)即可: 除一个数等同于在模的意义下乘以一个数的逆元: 代码: #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std; #define maxn 100005
UOJ#46. 【清华集训2014】玄学
传送门 分析 清华集训真的不是人做的啊嘤嘤嘤 我们可以考虑按操作时间把每个操作存进线段树里 如果现在点x正好使一个整块区间的右端点则更新代表这个区间的点 我们不难发现一个区间会因为不同的操作被分成若干块,每块对应序列上不同的区间 于是查询时对于每个线段树上区间查询时二分查找当前点在哪一块中即可 代码 #include<iostream> #include<cstdio> #include<cstring> #include<string> #include&
清华集训2014 sum
清华集训2014sum 求\[∑_{i=1}^{n}(-1)^{⌊i√r⌋}\] 多组询问,\(n\leq 10^9,t\leq 10^4, r\leq 10^4\). 吼题解啊 具体已经讲得很详细了(找了好久才找到的良心题解.) 首先看到向下取整的式子要会拆开. 然后套类欧几里德. 这里的类欧几里德比较简单,因为可以看作是\(y=kx\)的正比例的向下整点. 如果\(k>1\),那么就相当与直接算上面的点,然后把直线砍到\(k\leq 1\). 否则取反函数,相当于减小了\(n\)而增大了\(
【bzoj3811】【清华集训2014】玛里苟斯
3811: 玛里苟斯 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 500 Solved: 196[Submit][Status][Discuss] Description 魔法之龙玛里苟斯最近在为加基森拍卖师的削弱而感到伤心,于是他想了一道数学题. S 是一个可重集合,S={a1,a2,…,an}. 等概率随机取 S 的一个子集 A={ai1,…,aim}. 计算出 A 中所有元素异或 x, 求 xk 的期望. Input 第一行两个正整
清华集训2014 day1 task1 玛里苟斯
题目 这可算是描述很简单的一道题了!但是不简单. \(S\)是一个可重集合,\(S = \{a_1, a_2, \dots, a_n \}\). 等概率随机取\(S\)的一个子集\(A = \{a_{i_1}, \dots, a_{i_m}\}\). 计算出\(A\)中所有元素异或\(x\), 求\(x^k\)的期望. 要点 要点 1 所有异或出来的不同结果的数量是同样多的(这句话可能有点不清楚). 我的意思是说,假如异或出来的结果有\(5\).\(3\).\(4\),那么结果是\(5\)的异或
[UOJ]#36. 【清华集训2014】玛里苟斯
题目大意:给n个数字,求子集的异或和的k次方的期望(n<=10^5,k<=5,保证答案小于2^63) 做法:首先如果从集合中拿出a和b,把a和a xor b放回集合,子集的异或和与原来是一一对应的,用高斯消元的思想可以消到只剩log个数,其他都是0,对答案没有影响.然后考虑k次方的期望,我们把二进制下每一位拆开,假设第i位的数字为xi,答案为(x1+x2+...+xlog)^k的期望,展开式子后发现是选k次x1~xlog中的数(可以重复选),每种选法选的位的乘积的期望的和,暴力枚举每种选法,复
UOJ#36. 【清华集训2014】玛里苟斯 线性基
原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ36.html 题解 按照 $k$ 分类讨论: k=1 : 我们考虑每一位的贡献.若有至少一个数第 $i$ 位为 $1$ ,则对答案的贡献为 $2^i/2$ . k=2 : 发现每个异或和的平方为 $\sum_i\sum_j2^{i+j}bit_ibit_j$.那么考虑第 $i$ 位和第 $j$ 位的积的期望值.如果所有的数中,第 $i$ 位和第 $j$ 位均相等且非全零,那么参考 k=1 的情况,期望为
UOJ #36「清华集训2014」玛里苟斯
这怎么想得到啊......... UOJ #36 题意:求随机一个集合的子集的异或和的$k$次方的期望值,保证答案$ \lt 2^{63},1 \leq k \leq 5$ $ Solution:$ 首先考虑$ k=1$的时候怎么做:如果某位上有$ 1$则有$ \frac{1}{2}$的概率可以取到这一位 $ k=1$时每一位都是独立的,可以直接做 然后考虑$ k=2$时怎么做 如果一个集合中有元素$ a,b$,则产生的贡献为$ a^2+2ab+b^2$ 我们把$ a^2$和$2ab$分开讨论
UOJ #36 -【清华集训2014】玛里苟斯(线性基+暴搜)
UOJ 题面传送门 看到 \(k\) 次方的期望可以很自然地想到利用低次方和维护高次方和的套路进行处理,不过.由于这里的 \(k\) 达到 \(5\),直接这么处理一来繁琐,二来会爆 long long,因此考虑另辟蹊径.注意到答案 \(\le 2^{63}-1\),也就是说当 \(k\) 比较大时值域也不会太大.因此考虑对 \(k\) 分类讨论. \(k=1\) 时考虑计算每一位的贡献,注意到对于一位 \(i\),如果存在某个 \(a_j\) 满足 \(a_j\) 的 \(2^i\) 位为 \
清华集训2014 day2 task1 简单回路
题目 如题. 算法 就是刚学习的插头DP. 从前往后和从后往前分别进行一次DP. 要点 合法的括号序列只有103个 如何合并两次dp的信息 一开始犯傻了,以为当且仅当两个轮廓线的状态相同才是合法的方案.其实很容易举出反例. 如果直接枚举的话,每次询问的时间复杂度是\(O(103^2 m)\). 为了加快速度,可以把所有合法的方案先列举出来(就是预处理),只有\(103^2\)个.每次询问的复杂度优化为\(O(103^2)\). 时间复杂度 \(O(103 \cdot n \cdot m + 10
清华集训2014 day2 task3 矩阵变换
题目 算法 稳定婚姻系统(其实就是贪心) 一个方案不合法,当且仅当下面这种情况: 设第\(i\)行选了数字\(x\),如果第\(j\)行有一个\(x\)在第\(i\)行的\(x\)后面,并且第\(j\)行所选的数字在第\(j\)行的\(x\)后面. 分析到这里就是典型的稳定婚姻系统了. 代码 #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> #inclu
清华集训2014 day1 task2 主旋律
题目 这可算是一道非常好的关于容斥原理的题了. 算法 好吧,这题我毫无思路,直接给正解. 首先,问题的正面不容易求,那么就求反面吧: 有多少种添加边的方案,使得这个图是DAG图(这里及以下所说的DAG图都是指这个图不是整个强连通的). 利用容斥原理,DAG图的特征是有至少一个入度为\(0\)的点并且这个图不止一个点(这里及以下所说的点都是指求强连通后的点),就根据这个进行容斥. 设\(g(set)\)为集合里的点都是入度为\(0\)的方案数,注意,这个有点特别,比如这个: 它的值应该为\(0\)
清华集训2014 day1 task3 奇数国
题目 题目看起来好像很难的样子!其实不然,这是最简单的一道题. 算法 首先要注意的是: \(number \cdot x + product \cdot y = 1\) ,那么我们称\(number\)与\(product\)不相冲. 等价于 当\(number\)和\(product\)互质时,那么我们称\(number\)与\(product\)不相冲. 所以求与\(product\)不冲突的\(number\)个数,即是求\(\varphi (product)\)(即\(product\)
uoj#38. 【清华集训2014】奇数国【欧拉函数】
number⋅x+product⋅y=1 有整数x,y解的条件是gcd(number, product) == 1. product用线段树维护一下,然后现学了个欧拉函数. 可以这样假如x = p1^a1 * p2^a2 * p3^a3 * ... * pn^an,那么phi(x) = (p1 - 1) * p1^(a1 - 1) + (p2 - 1) * p2^(a2 - 1) + (p3 - 1) * p3^(a3 - 1) + ... + (pn - 1) * pn^(an - 1).
[UOJ 41]【清华集训2014】矩阵变换
Description 给出一个 $N$ 行 $M$ 列的矩阵A, 保证满足以下性质: $M > N$. 矩阵中每个数都是 $[0, N]$ 中的自然数. 每行中, $[1, N]$ 中每个自然数都恰好出现一次.这意味着每行中 $0$ 恰好出现 $M - N$ 次. 每列中,$[1, N]$ 中每个自然数至多出现一次. 现在我们要在每行中选取一个非零数,并把这个数之后的数赋值为这个数.我们希望保持上面的性质4,即每列中,$[1, N]$ 中每个自然数仍然至多出现一次. Input 第一行一个正整
UOJ#37. 【清华集训2014】主旋律
题目大意: 传送门 题解: 神题……Orz. 首先正难则反. 设$f_S$表示选取点集状态为s时,这部分图可以构成非强联通图的方案数. 设$p_{S,i}$表示点集s缩点后有i个入度为0点的方案数,保证$i<|S|$. 设$e[S,T]$表示从S集合到T集合的边数. 很显然有. 好吧,并不显然……还是来解释一下…… 考虑求$f_S$,我们知道缩点后必然会有一些点环的入度为0,但数量并不确定,我们强制性的让一部分图构成一部分缩点后为i个入度为0的子图.然后将这部分图随意连向剩余子图,至于剩余子图内
UOJ#41. 【清华集训2014】矩阵变换 构造
原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ41.html 题解 首先写个乱搞: 一开始每一行都选择第一个非0元素,然后,我们对这个方案不断做更新,直到任意两行选择的值不同.更新方法:如果有两行选了相同的值,那么让靠前的那行选择后一个有0的值. 交上去. 过了. wtf? 然后发现证明这个结论我花的时间远远大于AC这题QAQ 现在我们来证明一下: 首先,如果这个算法算出解了,那么肯定合法.这个比较显然就不证明了. 然后,我们来分两步证明一定有解.
UOJ#42. 【清华集训2014】Sum 类欧几里德算法
原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ42.html 题解 首先我们把式子改写一下: $$(-1)^{\lfloor a\rfloor} \\=1-2(\lfloor a\rfloor \bmod 2)\\=1-2(\lfloor a\rfloor -2\lfloor \frac a2 \rfloor)$$ 于是问题就变成了求解: $$f(a,b,c,n) = \sum_{i=1}^n \left\lfloor \frac {a\sqrt{r
热门专题
ssm框架前后端是如何交互的
nuxt新建项目报错
sed命令删除字符串后面的内容
Dynamics CRM Server 2013 安装
mac 的eclipse 卡
sqlite 、不支持row_number
ARM内部bootrom
codeblocks怎么添加makefile
taro "h5"上传文件 -小程序
onctlcolor和oninitialupdate
前端blob类型的返回数据如何解析
Jersey bundle 官网
centos7搭建socks5
BigDecimal怎么判断余数为零
arduino UNO 引脚图
java classpath字符串提取类名
python人员查询
java 解析excel 科学计数
latex怎么调整页面宽度
umi dva 如何实现组件间相互通信