Keras的核心原则是逐步揭示复杂性,可以在保持相应的高级便利性的同时,对操作细节进行更多控制.当我们要自定义fit中的训练算法时,可以重写模型中的train_step方法,然后调用fit来训练模型. 这里以tensorflow2官网中的例子来说明: import numpy as np import tensorflow as tf from tensorflow import keras x = np.random.random((1000, 32)) y = np.random.rando
自定义tf.keras.Model需要注意的点 model.save() subclass Model 是不能直接save的,save成.h5,但是能够save_weights,或者save_format="tf" NotImplementedError: Saving the model to HDF5 format requires the model to be a Functional model or a Sequential model. It does not work