How do decision trees for regression work? 决策树模型既可以求解分类问题(对应的就是 classification tree),也即对应的目标值是类别型数据,也可以应用于回归预测问题的求解(regression tree),其输出值则可以是连续的实数值.一般市面上介绍决策树模型的书及相关的教学视频,通常只关注决策树在分类问题上的求解,而一笔带过对回归树的介绍.事实上,二者的构建过程也确实没有本质的不同,二者的差异主要集中在划分属性时的划分原则上. 1.
TensorFlow 训练好模型参数的保存和恢复代码,之前就在想模型不应该每次要个结果都要重新训练一遍吧,应该训练一次就可以一直使用吧. TensorFlow 提供了 Saver 类,可以进行保存和恢复.下面是 TensorFlow-Examples 项目中提供的保存和恢复代码. ''' Save and Restore a model using TensorFlow. This example is using the MNIST database of handwritten digits