首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
高维数据用DBSCAN处理异常值
2024-08-12
异常值检测方法(Z-score,DBSCAN,孤立森林)
机器学习_深度学习_入门经典(博主永久免费教学视频系列) https://study.163.com/course/courseMain.htm?courseId=1006390023&share=2&shareId=400000000398149 微信扫二维码,免费学习更多python资源 数据预处理的好坏,很大程度上决定了模型分析结果的好坏.(Garbage In Garbage Out!) 其中,异常值(outliers)检测是整个数据预处理过程中,十分重要的一环.方法也是多种多样
利用 t-SNE 高维数据的可视化
利用 t-SNE 高维数据的可视化 具体软件和教程见: http://lvdmaaten.github.io/tsne/ 简要介绍下用法: % Load data load ’mnist_train.mat’ ind = randperm(size(train_X, 1)); train_X = train_X(ind(1:5000),:); train_labels = train_labels(ind(1:5000)); % Set parameters no_dims = 2; ini
基于Hash算法的高维数据的最近邻检索
一.摘要 最紧邻检索:一种树基于树结构,一种是基于hash a.随机投影算法,需要产生很多哈希表,才能提高性能. b.基于学习的哈希算法在哈希编码较短时候性能不错,但是增加编码长度并不能显著提高性能. 随机投影:实际上就是随机的,实际上需要挖掘使用数据的内部结构,结合最大熵原理. 基于密度的哈希就是依据数据分布产生最合理的投影. 数据稀疏:稀疏编码+ 压缩感知 GIST1M数据集2.55G,这个是专门做最近邻检索的. 二.绪论 2.1 课题背景 最近邻检索的主要问题是如何建立高效索引. 数据集是
高维数据的高速近期邻算法FLANN
版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/jinxueliu31/article/details/37768995 高维数据的高速近期邻算法FLANN 1. 简单介绍 在计算机视觉和机器学习中,对于一个高维特征,找到训练数据中的近期邻计算代价是昂贵的.对于高维特征,眼下来说最有效的方法是 the randomized k-d forest和the priority search k-means tree,而对于二值
高维数据降维 国家自然科学基金项目 2009-2013 NSFC Dimensionality Reduction
2013 基于数据降维和压缩感知的图像哈希理论与方法 唐振军 广西师范大学 多元时间序列数据挖掘中的特征表示和相似性度量方法研究 李海林 华侨大学 基于标签和多特征融合的图像语义空间学习技术研究 管子玉 西北大学 非负矩阵分解中维数约减问题研究 赵金熙 南京大学 58 大数据环境下高维数据流挖掘算法及应用研究 冯林 大连理工大学 面向高维信息的非线性维数约减问题研究 高小方 山西大学 基于支持向量机的增量式强化学习技术及其应用研究 伏玉琛
K-means + PCA + T-SNE 实现高维数据的聚类与可视化
使用matlab完成高维数据的聚类与可视化 [idx,Centers]=kmeans(qy,) [COEFF,SCORE,latent] = pca(qy); SCORE = SCORE(:,:); mappedX = tsne(SCORE,); c=zeros(,); for i = : c(i,idx(i)) = ; end scatter3(mappedX(:,),mappedX(:,),mappedX(:,),,c,'fill') % 数据qy为211个,48维. % K-means:
机器学习:PCA(高维数据映射为低维数据 封装&调用)
一.基础理解 1) PCA 降维的基本原理 寻找另外一个坐标系,新坐标系中的坐标轴以此表示原来样本的重要程度,也就是主成分:取出前 k 个主成分,将数据映射到这 k 个坐标轴上,获得一个低维的数据集. 2)主成分分析法的本质 将数据集从一个坐标系转换到另一个坐标系,原坐标系有 n 个维度(n 中特征),则转换的新坐标系也有 n 个维度,每个主成分表示一个维度,只是对于转换后的坐标系,只取前 k 个维度(也就是前 k 个主成分),此 k 个维度相对于数据集更加重要,形成矩阵 Wk : 3)将 n
高维数据Lasso思路
海量数据的特征工程中, 如果数据特征维度达到几千乃至上万 常规的lasso很容易失效 这里介绍几种泛义lasso,是在实际数据处理中常用的 迭代与分块思路/分组的使用(有兴趣的同学可自行实践一下) 1. 迭代lasso 2. 分组/聚类lasso 3. 分组与降维结合lasso 另外在<<高维数据统计方法.理论与应用>> 一书中介绍了很多lasso方法,其中有广义group lasso的方法也很值得借鉴
【笔记】求数据前n个主成分以及对高维数据映射为低维数据
求数据前n个主成分并进行高维数据映射为低维数据的操作 求数据前n个主成分 先前的将多个样本映射到一个轴上以求使其降维的操作,其中的样本点本身是二维的样本点,将其映射到新的轴上以后,还不是一维的数据,对于n维数据来说,他应该有n个轴,第一个轴是方差最大的,第二个轴次之,以此类推,可以将主成分分析法看做是将数据从一个坐标系转换到另一个坐标系中 那么在求出第一主成分以后,如何求出下一个主成分呢?我们可以对数据进行改变来达到这个效果,即将数据在第一主成分上的分量给去掉 先前的Xi点乘上w以后是等于Xpr
【Python代码】TSNE高维数据降维可视化工具 + python实现
目录 1.概述 1.1 什么是TSNE 1.2 TSNE原理 1.2.1入门的原理介绍 1.2.2进阶的原理介绍 1.2.2.1 高维距离表示 1.2.2.2 低维相似度表示 1.2.2.3 惩罚函数 1.2.2.4 为什么是局部相似性 1.2.2.5 为什么选择高斯和t分布 2 python实现 参考内容 1.概述 1.1 什么是TSNE TSNE是由T和SNE组成,T分布和随机近邻嵌入(Stochastic neighbor Embedding). TSNE是一种可视化工具,将高位数据降到2
数据处理:2.异常值处理 & 数据归一化 & 数据连续属性离散化
1.异常值分析 异常值是指样本中的个别值,其数值明显偏离其余的观测值.异常值也称离群点,异常值的分析也称为离群点的分析. 异常值分析 → 3σ原则 / 箱型图分析异常值处理方法 → 删除 / 修正填补 1.1 3σ原则 / 箱型图分析 import numpy as np import pandas as pd import matplotlib.pyplot as plt from scipy import stats % matplotlib inline # 异常值分析 # (1)3σ原则
R_Studio(学生成绩)对数据缺失值md.pattern()、异常值分析(箱线图)
我们发现这张Gary.csv表格存在学生成绩不完全的(五十三名学生,三名学生存在成绩不完整.共四个不完整成绩) 79号大学语文.高等数学 96号中国近代史纲要 65号大学体育 (1)NA表示数据集中的该数据遗失.不存在.在针对具有NA的数据集进行函数操作的时候,该NA不会被直接剔除.如x<-c(1,2,3,NA,4),取mean(x),则结果为NA,如果想去除NA的影响,需要显式告知mean方法,如 mean(x,na.rm=T):NA是没有自己的mode的,在vector中,它会“追随”其他数
Tableau学习Step4一数据解释、异常值监测、参数使用、分析结果如何对外发布
Tableau学习Step4一数据解释.异常值监测.参数使用.分析结果如何对外发布 本文首发于博客冰山一树Sankey,去博客浏览效果更好. 一. 前言 本教程通过一个案例从浅到深来学习Tableau知识 1.1 消费者信心指数定义 消费者信心( Consumer Confidence or Consumer Sentiment)是指消费者根据国家或地区的经济发展形势,对就业.收入.物价.利 率等问题综合判断后得出的一种看法和预期·居民在决策家庭的开销,特别是购买诸如住宅.汽车等耐用商品时,是经
DBSCAN聚类︱scikit-learn中一种基于密度的聚类方式
一.DBSCAN聚类概述 基于密度的方法的特点是不依赖于距离,而是依赖于密度,从而克服基于距离的算法只能发现"球形"聚簇的缺点. DBSCAN的核心思想是从某个核心点出发,不断向密度可达的区域扩张,从而得到一个包含核心点和边界点的最大化区域,区域中任意两点密度相连. 1.伪代码 算法: DBSCAN 输入: E - 半径 MinPts - 给定点在 E 领域内成为核心对象的最小领域点数 D - 集合 输出:目标类簇集合 方法: repeat 1) 判断输入点是否为核心对象 2) 找出核
聚类 高维聚类 聚类评估标准 EM模型聚类
高维数据的聚类分析 高维聚类研究方向 高维数据聚类的难点在于: 1.适用于普通集合的聚类算法,在高维数据集合中效率极低 2.由于高维空间的稀疏性以及最近邻特性,高维的空间中基本不存在数据簇. 在高维聚类的研究中有如下几个研究重点: 1)维度约简,主要分为特征变换和特征选择两大类.前者是对特征空间的变换映射,常见的有PCA.SVD等.后者则是选择特征的子集,常见的搜索方式有自顶向下.随机搜索等:(降维) 2)高维聚类算法,主要分为高维全空间聚类和子空间聚类算法.前者的研究主要聚焦在对传统聚类算法的
基于密度聚类的DBSCAN和kmeans算法比较
根据各行业特性,人们提出了多种聚类算法,简单分为:基于层次.划分.密度.图论.网格和模型的几大类. 其中,基于密度的聚类算法以DBSCAN最具有代表性. 场景 一 假设有如下图的一组数据, 生成数据的R代码如下 x1 <- seq(,pi,length.) y1 <- sin(x1) + ) x2 <- ,pi,length.) y2 <- cos(x2) + ) data <- data.frame(c(x1,x2),c(y1,y2)) names(data) <-
5.机器学习——DBSCAN聚类算法
1.优缺点 优点: (1)聚类速度快且能够有效处理噪声点和发现任意形状的空间聚类: (2)与K-MEANS比较起来,不需要输入要划分的聚类个数: (3)聚类簇的形状没有偏倚: (4)可以在需要时输入过滤噪声的参数. 缺点: (1)当数据量增大时,要求较大的内存支持I/O消耗也很大: (2)当空间聚类的密度不均匀.聚类间距差相差很大时,聚类质量较差,因为这种情况下参数MinPts和Eps选取困难. (3)算法聚类效果依赖与距离公式选取,实际应用中常用欧式距离,对于高维数据,存在“维数灾难”. 参考
机器学习 之k-means和DBSCAN的区别
目录 1.定义和区别(优缺点对比) 2.kmeans原理 3.DBSCAN原理 1.定义和区别(优缺点对比) 聚类分为:基于划分.层次.密度.图形和模型五大类: 均值聚类k-means是基于划分的聚类, DBSCAN是基于密度的聚类.区别为: k-means需要指定聚类簇数k,并且且初始聚类中心对聚类影响很大.k-means把任何点都归到了某一个类,对异常点比较敏感.DBSCAN能剔除噪声,需要指定邻域距离阈值eps和样本个数阈值MinPts,可以自动确定簇个数. K均值和DBSCAN都是将每个
【机器学习】DBSCAN Algorithms基于密度的聚类算法
一.算法思想: DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一个比较有代表性的基于密度的聚类算法.与划分和层次聚类方法不同,它将簇定义为密度相连的点的最大集合,能够把具有足够高密度的区域划分为簇,并可在噪声的空间数据库中发现任意形状的聚类. DBSCAN中的几个定义: Ε邻域:给定对象半径为Ε内的区域称为该对象的Ε邻域: 核心对象:如果给定对象Ε领域内的样本点数大于等于MinPts,则称该对象为核心对象:
TSNE数据降维学习【转载】
转自:https://blog.csdn.net/u012162613/article/details/45920827 https://www.jianshu.com/p/d6e7083d7d61 1.思想 t-SNE(t-distributed stochastic neighbor embedding)是用于降维的一种机器学习算法,是由 Laurens van der Maaten 和 Geoffrey Hinton在08年提出来. 此外,t-SNE 是一种非线性降维算法,非常适用于高维数
热门专题
docker rmi是什么意思
uniapp图标点击切换样式
argmax和softmax
C语言低通滤波器的时间常数
burpsuite抓取指定host的包
纯css3 transform opacity
js forEach 怎么改数组
js 逆向 谷歌翻译
freecad 打开 dwg
sql server发布订阅后无法收缩
excel 宏 获取行数
mysql导出csv 身份证号
深度图像颜色越浅越近吗
multisim中74ls860
swift CABasicAnimation 组合动画
鼠标停在工具栏按钮T上,状态栏提示为对话框测试
layui tree 滚动条
virtuoso与allegro的关系
keil 仿真没有read权限
微信怎么抓cookie