论文题目: ERNIE: Enhanced Language Representation with Informative Entities(THU/ACL2019) 本文的工作也是属于对BERT锦上添花,将知识图谱的一些结构化信息融入到BERT中,使其更好地对真实世界进行语义建模.也就是说,原始的bert模型只是机械化地去学习语言相关的“合理性”,而并学习不到语言之间的语义联系,打个比喻,就比如掉包xia只会掉包,而不懂每个包里面具体是什么含义.于是,作者们的工作就是如何将这些额外的知识告诉
论文<BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding> 以下陆续介绍bert及其变体(介绍的为粗体) bert自从横空出世以来,引起广泛关注,相关研究及bert变体/扩展喷涌而出,如ELECTRA.DistilBERT.SpanBERT.RoBERTa.MASS.UniLM.ERNIE等. 由此,bert的成就不仅是打破了多项记录,更是开创了一副可期的前景. 1, Bert 在看b
How to Train a GAN? Tips and tricks to make GANs work 转自:https://github.com/soumith/ganhacks While research in Generative Adversarial Networks (GANs) continues to improve the fundamental stability of these models, we use a bunch of tricks to train th
同步自我的知乎专栏文章:https://zhuanlan.zhihu.com/p/32135185 从Slerp说起 ICLR'2017的投稿里,有一篇很有意思但被拒掉的投稿<Sampling Generative Networks> by Tom White.文章比较松散地讲了一些在latent space挺有用的采样和可视化技巧,其中一个重要的点是指出在GAN的latent space中,比起常用的线性插值,沿着两个采样点之间的"弧"进行插值是更合理的办法.实现的方法就
GAN 自从被提出以来,就广受大家的关注,尤其是在计算机视觉领域引起了很大的反响,但是这么好的理论是否可以成功地被应用到自然语言处理(NLP)任务呢? Ian Goodfellow 博士 一年前,网友在 reddit 上提问道,生成式对抗网络 GAN 是否可以应用到自然语言处理上.GAN 理论的提出者,OpenAI 的科学家,深度学习理论奠基人之一 Yoshua Bengio 的得意门生 Ian Goodfellow 博士回答了这个问题: GANs 目前并没有应用到自然语言处理(NLP)中,因为