尺度不变特征变换匹配算法详解Scale Invariant Feature Transform(SIFT)Just For Fun zdd zddmail@gmail.com 对于初学者,从David G.Lowe的论文到实现,有许多鸿沟,本文帮你跨越. 1.SIFT综述 尺度不变特征转换(Scale-invariant feature transform或SIFT)是一种电脑视觉的算法用来侦测与描述影像中的局部性特征,它在空间尺度中寻找极值点,并提取出其位置.尺度.旋转不变量,此算法由 Da
Speeded Up Robust Features(SURF,加速稳健特征),是一种稳健的局部特征点检测和描述算法.最初由Herbert Bay发表在2006年的欧洲计算机视觉国际会议(Europen Conference on Computer Vision,ECCV)上,并在2008年正式发表在Computer Vision and Image Understanding期刊上. Surf是对David Lowe在1999年提出的Sift算法的改进,提升了算法的执行效率,为算法在实时计算机
一.引言 双边滤波在图像处理领域中有着广泛的应用,比如去噪.去马赛克.光流估计等等,最近,比较流行的Non-Local算法也可以看成是双边滤波的一种扩展.自从Tomasi et al等人提出该算法那一天起,如何快速的实现他,一直是人们讨论和研究的焦点之一,在2011年及2012年Kunal N. Chaudhury等人发表的相关论文中,提出了基于三角函数关系的值域核算法,能有效而又准确的实现高效双边算法.本文主要对此论文提出的方法加以阐述. 双边滤波的边缘保持特性主要是通过在卷积的过程中