一.SparkSQL发展: Shark是一个为spark设计的大规模数据仓库系统,它与Hive兼容 Shark建立在Hive的代码基础上,并通过将Hive的部分物理执行计划交换出来(by swapping out the physical execution engine part of Hive).这个方法使得Shark的用户可以加速Hive的查询,但是Shark继承了Hive的大且复杂的代码基线使得Shark很难优化和维护.随着我们遇到了性能优化的上限,以及集成SQL的一些复杂的分
在spark中,RDD.DataFrame.Dataset是最常用的数据类型,本博文给出笔者在使用的过程中体会到的区别和各自的优势 共性: 1.RDD.DataFrame.Dataset全都是spark平台下的分布式弹性数据集,为处理超大型数据提供便利 2.三者都有惰性机制,在进行创建.转换,如map方法时,不会立即执行,只有在遇到Action如foreach时,三者才会开始遍历运算,计算情况下,如果代码里面有创建.转换,但是后面没有在Action中使用对应的结果,在执行时会被直接跳过,如 va