利用GBDT模型构造新特征具体方法 数据挖掘入门与实战 公众号: datadw 实际问题中,可直接用于机器学**模型的特征往往并不多.能否从"混乱"的原始log中挖掘到有用的特征,将会决定机器学**模型效果的好坏.引用下面一句流行的话: 特征决定了所有算法效果的上限,而不同的算法只是离这个上限的距离不同而已. 本文中我将介绍Facebook最近发表的利用GBDT模型构造新特征的方法. (Xinran He et al. Practical Lessons from Predict
之前一篇文章简单地讲了XGBoost的实现与普通GBDT实现的不同之处,本文尝试总结一下GBDT运用的正则化技巧. Early Stopping Early Stopping是机器学习迭代式训练模型中很常见的防止过拟合技巧,维基百科里如下描述: In machine learning, early stopping is a form of regularization used to avoid overfitting when training a learner with an itera