首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
Hadoop解决数据倾斜方法
2024-09-02
hadoop之数据倾斜
数据倾斜介绍 在做Shuffle阶段的优化过程中,遇到了数据倾斜的问题,造成了对一些情况下优化效果不明显.主要是因为在Job完成后的所得到的Counters是整个Job的总和,优化是基于这些Counters得出的平均值,而由于数据倾斜的原因造成map处理数据量的差异过大,使得这些平均值能代表的价值降低.Hive的执行是分阶段的,map处理数据量的差异取决于上一个stage的reduce输出,所以如何将数据均匀的分配到各个reduce中,就是解决数据倾斜的根本所在.规避错误来更好的运行比解决错误更
[MapReduce_add_3] MapReduce 通过分区解决数据倾斜
0. 说明 数据倾斜及解决方法的介绍与代码实现 1. 介绍 [1.1 数据倾斜的含义] 大量数据发送到同一个节点进行处理,造成此节点繁忙甚至瘫痪,而其他节点资源空闲 [1.2 解决数据倾斜的方式] 重新设计 Key(配合二次 MR 使用) 随机分区 伪代码如下: RandomPartition extends Partitioner{ return r.nextInt() } 2. 重新设计 Key 代码编写 [2.1 WCMapper.java] package hadoop.mr.datas
Hadoop_22_MapReduce map端join实现方式解决数据倾斜(DistributedCache)
1.Map端Join解决数据倾斜 1.Mapreduce中会将map输出的kv对,按照相同key分组(调用getPartition),然后分发给不同的reducetask 2.Map输出结果的时候调用了Partitioner组件(返回分区号),由它决定将数据放到哪个区中,默认的分组规 则为:根据key的hashcode%reducetask数来分发,源代码如下: public class HashPartitioner<K, V> extends Partitioner<K, V&g
Spark性能调优之解决数据倾斜
Spark性能调优之解决数据倾斜 数据倾斜七种解决方案 shuffle的过程最容易引起数据倾斜 1.使用Hive ETL预处理数据 • 方案适用场景:如果导致数据倾斜的是Hive表.如果该Hive表中的数据本身很不均匀(比如某个 key对应了100万数据,其他key才对应了10条数据),而且业务场景需要频繁使用Spark对Hive表 执行某个分析操作,那么比较适合使用这种技术方案. • 方案实现思路:此时可以评估一下,是否可以通过Hive来进行数据预处理(即通过Hive ETL预先对
【Spark篇】---Spark解决数据倾斜问题
一.前述 数据倾斜问题是大数据中的头号问题,所以解决数据清洗尤为重要,本文只针对几个常见的应用场景做些分析 . 二.具体方法 1.使用Hive ETL预处理数据 方案适用场景: 如果导致数据倾斜的是Hive表.如果该Hive表中的数据本身很不均匀(比如某个key对应了100万数据,其他key才对应了10条数据),而且业务场景需要频繁使用Spark对Hive表执行某个分析操作,那么比较适合使用这种技术方案. 方案实现思路: 此时可以评估一下,是否可以通过Hive来进行数据预处理(即通过Hive
专访周金可:我们更倾向于Greenplum来解决数据倾斜的问题
周金可,就职于听云,维护MySQL和GreenPlum的正常运行,以及调研适合听云业务场景的数据库技术方案. 听云周金可 9月24日,周金可将参加在北京举办的线下活动,并做主题为<GreenPlum在听云大数据实时分析的实践>的分享.值此,他分享了PG.工作上的一些经历和经验. 免费报名链接:http://click.aliyun.com/m/6101/ 正文: 周金可刚参加工作时是做系统运维的,后来慢慢接触了各种数据库,开始对数据库感兴趣,经过一段时间的积累后转向了DBA. “在我加入听云时
MapReduce如何解决数据倾斜?
数据倾斜是日常大数据查询中隐形的一个BUG,遇不到它时你觉得数据倾斜也就是书本博客上的一个无病呻吟的偶然案例,但当你遇到它是你就会懊悔当初怎么不多了解一下这个赫赫有名的事故. https://www.zhihu.com/question/27593027 之乎者也
hadoop ncdc数据下载方法
我在看<Hadoop权威指南>时,里面提供了NCDC天气数据样本,提供的下载链接是:点击打开链接,但是里面只提供了1901和1902这两年的数据,这未免也太少了点!完全称不上“BIG DATA”,于是我现在提供一个方法获取1901年到2014年的天气数据样本.在网站:点击打开链接中提供了这些数据包,虽然每一个包都只有几十K,但是数据包太过于多了,原来是太少了,现在是太多了,都是个问题,不可能一个个手动去下载,其实编写几行shell语句就可以轻松解决这个问题! 准备工作:要是在Ubuntu或者是
hadoop job解决大数据量关联时数据倾斜的一种办法
转自:http://www.cnblogs.com/xuxm2007/archive/2011/09/01/2161929.html http://www.geminikwok.com/2011/04/02/hadoop-jobè§£å³å¤§æ°æ®éå ³èæ—¶æ°æ®å¾æçä¸ç§åæ³/ 数据倾斜是指,map /reduce程序执行时,reduce节点大部分执行完毕,但是有一个或者几个reduce节点运行很慢,导致整个程序的处理时间很长,这是因为
Hive 数据倾斜原因及解决方法(转)
在做Shuffle阶段的优化过程中,遇到了数据倾斜的问题,造成了对一些情况下优化效果不明显.主要是因为在Job完成后的所得到的Counters是整个Job的总和,优化是基于这些Counters得出的平均值,而由于数据倾斜的原因造成map处理数据量的差异过大,使得这些平均值能代表的价值降低.Hive的执行是分阶段的,map处理数据量的差异取决于上一个stage的reduce输出,所以如何将数据均匀的分配到各个reduce中,就是解决数据倾斜的根本所在.规避错误来更好的运行比解决错误更高效.在查看了
Spark性能优化之道——解决Spark数据倾斜(Data Skew)的N种姿势
原创文章,同步首发自作者个人博客转载请务必在文章开头处注明出处. 摘要 本文结合实例详细阐明了Spark数据倾斜的几种场景以及对应的解决方案,包括避免数据源倾斜,调整并行度,使用自定义Partitioner,使用Map侧Join代替Reduce侧Join,给倾斜Key加上随机前缀等. 为何要处理数据倾斜(Data Skew) 什么是数据倾斜 对Spark/Hadoop这样的大数据系统来讲,数据量大并不可怕,可怕的是数据倾斜. 何谓数据倾斜?数据倾斜指的是,并行处理的数据集中,某一部分(如Spar
hadoop 数据倾斜
数据倾斜是指,map /reduce程序执行时,reduce节点大部分执行完毕,但是有一个或者几个reduce节点运行很慢,导致整个程序的处理时间很长,这是因为某一个key的条数比其他key多很多(有时是百倍或者千倍之多),这条key所在的reduce节点所处理的数据量比其他节点就大很多,从而导致某几个节点迟迟运行不完. 阿里的这篇比较实用,通俗易懂:数据倾斜总结 http://www.tbdata.org/archives/2109 有篇分析比较详细,如果需要使用可以细读:http://blo
Hadoop基础-MapReduce的数据倾斜解决方案
Hadoop基础-MapReduce的数据倾斜解决方案 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.数据倾斜简介 1>.什么是数据倾斜 答:大量数据涌入到某一节点,导致此节点负载过重,此时就产生了数据倾斜. 2>.处理数据倾斜的两种方案 第一:重新设计key: 第二:设计随机分区: 二.模拟数据倾斜 screw.txt 文件内容 1>.App端代码 /* @author :yinzhengjie Blog:http://www.cnblogs.com/yinzh
实战 | Hive 数据倾斜问题定位排查及解决
Hive 数据倾斜怎么发现,怎么定位,怎么解决 多数介绍数据倾斜的文章都是以大篇幅的理论为主,并没有给出具体的数据倾斜案例.当工作中遇到了倾斜问题,这些理论很难直接应用,导致我们面对倾斜时还是不知所措. 今天我们不扯大篇理论,直接以例子来实践,排查是否出现了数据倾斜,具体是哪段代码导致的倾斜,怎么解决这段代码的倾斜. 当执行过程中任务卡在 99%,大概率是出现了数据倾斜,但是通常我们的 SQL 很大,需要判断出是哪段代码导致的倾斜,才能利于我们解决倾斜.通过下面这个非常简单的例子来看下如何定位产
hive数据倾斜原因以及解决办法
何谓数据倾斜?数据倾斜指的是,并行处理的数据集 中,某一部分(如Spark的一个Partition)的数据显著多于其它部分,从而使得该部分的处理速度成为整个数据集处理的瓶颈. 表现为整体任务基本完成,但仍有少量子任务的reduce还在运行. 数据倾斜的原因: 1.join 一个表较小,但key集中,分发到一个或者几个reduce上的数据远高于平均值: 大表与大表关联,但分桶的判断字段0值或者空值过多,这些空值或者0值都由一个reduce处理 2.group by 分组的维度过少,每个维度的值过多
浅析 Hadoop 中的数据倾斜
转自:http://my.oschina.net/leejun2005/blog/100922 最近几次被问到关于数据倾斜的问题,这里找了些资料也结合一些自己的理解. 在并行计算中我们总希望分配的每一个task 都能以差不多的粒度来切分并且完成时间相差不大,但是集群中可能硬件不同,应用的类型不同和切分的数据大小不一致总会导致有部分任务极大的拖慢了整个任务的完成时间,硬件不同就不说了,应用的类型不同其中就比如page rank 或者data mining 里面一些计算,它的每条记录消耗的成本不太一
Hive数据倾斜和解决办法
转自:https://blog.csdn.net/xinzhi8/article/details/71455883 操作: 关键词 情形 后果 Join 其中一个表较小,但是key集中 分发到某一个或几个Reduce 上的数据远高于平均值 大表与大表,但是分桶的判断字段0值或空值过多 这些空值都由一个reduce处理非常慢 group by group by 维度过小,某值的数量过多 处理某值的reduce非常耗时 Count Distinct 某特殊值过多
深入理解hadoop数据倾斜
深入理解hadoop之数据倾斜 1.什么是数据倾斜 我们在用map /reduce程序执行时,有时候会发现reduce节点大部分执行完毕,但是有一个或者几个reduce节点运行很慢,导致整个程序的处理时间很长,这是因为某一个key的条数比其他key多很多(有时是百倍或者千倍之多),这条key所在的reduce节点所处理的数据量比其他节点就大很多,从而导致某几个节点迟迟运行不完.这种现象就是因为key分布不均匀.散度不够导致的,也就是我们所说的数据倾斜. 2.数据倾斜产生的原因 在hive上执行j
Spark产生数据倾斜的原因以及解决办法
Spark数据倾斜 产生原因 首先RDD的逻辑其实时表示一个对象集合.在物理执行期间,RDD会被分为一系列的分区,每个分区都是整个数据集的子集.当spark调度并运行任务的时候,Spark会为每一个分区中的数据创建一个任务.大部分的任务处理的数据量差不多,但是有少部分的任务处理的数据量很大,因而Spark作业会看起来运行的十分的慢,从而产生数据倾斜(进行shuffle的时候). 数据倾斜只会发生在shuffle过程中.这里给大家罗列一些常用的并且可能会触发shuffle操作的算子:distinc
Hive的HQL语句及数据倾斜解决方案
[版权申明:本文系作者原创,转载请注明出处] 文章出处:http://blog.csdn.net/sdksdk0/article/details/51675005 作者: 朱培 ID:sdksdk0 Hive环境的搭建在这里也不重复说了,安装配置可以查看我的这篇文章:http://blog.csdn.net/sdksdk0/article/details/51512031.在这里主要是分享一下HQL语句实践及其函数的基本使用. 一.Hive的基本概念 在Hive中没有插入操作,
热门专题
idea codereview插件怎么用
linux filezilla 转输失败
RequestMapping 接收参数为空
java避免对象重复使用
elementui点击时高亮这一行,不点击其它行保持高亮状态
HAL库中断和延时卡死
latex怎么画跨行的表格
禁止 页滚动回弹顶部
mysql6.0安装教程
three.weapp.min.js 横屏 竖屏
function(){}()转换正常写法
DUILIB 单个组件事件绑定
basler 单张采集 报错
laravelwith原理
DatagramSocket端口复用
loadrunner12初始化配置
koolshare下载
win7无法安装vmware15
Java软件中logcat在哪里
Python海龟绘图知识点