交并比(Intersection-over-Union,IoU): 目标检测中使用的一个概念 是产生的候选框(candidate bound)与原标记框(ground truth bound)的交叠率 即它们的交集与并集的比值.最理想情况是完全重叠,即比值为1. 基础知识: 交集: 集合论中,设A,B是两个集合,由所有属于集合A且属于集合B的元素所组成的集合,叫做集合A与集合B的交集,记作A∩B. eg: A={1,2,3} B={2,3,4} A n B = {2,3} 并集: 给定两个集合A
你如何判断对象检测算法运作良好呢?在这一节中,你将了解到并交比函数,可以用来评价对象检测算法. 一 并交比(Intersection over union ) 在对象检测任务中,你希望能够同时定位对象,所以如果实际边界框是这样的,你的算法给出这个紫色的边界框,那么这个结果是好还是坏?所以交并比(loU)函数做的是计算两个边界框交集和并集之比.两个边界框的并集是这个区域,就是属于包含两个边界框区域(绿色阴影表示区域),而交集就是这个比较小的区域(橙色阴影表示区域),那么交并比就是交集的大小,这个橙
看完这篇就懂了. IoU intersect over union,中文:交并比.指目标预测框和真实框的交集和并集的比例. mAP mean average precision.是指每个类别的平均查准率的算术平均值.即先求出每个类别的平均查准率(AP),然后求这些类别的AP的算术平均值.其具体的计算方法有很多种,这里只介绍PASCAL VOC竞赛(voc2010之前)中采用的mAP计算方法,该方法也是yolov3模型采用的评估方法,yolov3项目中如此解释mAP,暂时看不明白可以先跳过,最后再
车位检测中,判断多帧图像检测出的车位是否是同一个车位.计算其IOU. 判断一个点是否在一个四边形内 Approach : Let the coordinates of four corners be A(x1, y1), B(x2, y2), C(x3, y3) and D(x4, y4). And coordinates of the given point P be (x, y) Calculate area of the given rectangle, i.e., area of the