首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
java有没有 reducebykey
2024-08-29
java实现spark常用算子之ReduceByKey
import org.apache.spark.SparkConf;import org.apache.spark.api.java.JavaPairRDD;import org.apache.spark.api.java.JavaSparkContext;import org.apache.spark.api.java.function.Function2;import org.apache.spark.api.java.function.VoidFunction;import scala.T
Spark案例分析
一.需求:计算网页访问量前三名 import org.apache.spark.rdd.RDD import org.apache.spark.{SparkConf, SparkContext} /** * 需求:计算网页访问量前三名 * 用户:喜欢视频 直播 * 帮助企业做经营和决策 * * 看数据 */ object UrlCount { def main(args: Array[String]): Unit = { //1.加载数据 val conf:SparkConf = new Spa
(九)groupByKey,reduceByKey,sortByKey算子-Java&Python版Spark
groupByKey,reduceByKey,sortByKey算子 视频教程: 1.优酷 2. YouTube 1.groupByKey groupByKey是对每个key进行合并操作,但只生成一个sequence,groupByKey本身不能自定义操作函数. java: package com.bean.spark.trans; import java.util.Arrays; import java.util.List; import org.apache.spark.SparkConf;
(四)Spark集群搭建-Java&Python版Spark
Spark集群搭建 视频教程 1.优酷 2.YouTube 安装scala环境 下载地址http://www.scala-lang.org/download/ 上传scala-2.10.5.tgz到master和slave机器的hadoop用户installer目录下 两台机器都要做 [hadoop@master installer]$ ls hadoop2 hadoop-2.6.0.tar.gz scala-2.10.5.tgz 解压 [hadoop@master installer]$
spark 快速入门 java API
Spark的核心就是RDD,对SPARK的使用入门也就是对RDD的使用,包括action和transformation 对于Java的开发者,单单看文档根本是没有办法理解每个API的作用的,所以每个SPARK的新手,最好按部就班直接学习scale, 那才是一个高手的必经之路,但是由于项目急需使用,没有闲工夫去学习一门语言,只能从JAVA入门的同学, 福利来了.... 对API的解释: 1.1 transform l map(func):对调用map的RDD数据集中的每个element都使用
Spark基础排序+二次排序(java+scala)
1.基础排序算法 sc.textFile()).reduceByKey(_+_,).map(pair=>(pair._2,pair._1)).sortByKey(false).map(pair=>(pair._2,pair._1)).collect //key value交换 sc.setLogLevel("WARN") 2.二次排序算法 所谓二次排序就是指排序的时候考虑两个维度(有可能10次排序) Java版本 package com.dt.java.spark; imp
Spark基础与Java Api介绍
原创文章,转载请注明: 转载自http://www.cnblogs.com/tovin/p/3832405.html 一.Spark简介 1.什么是Spark 发源于AMPLab实验室的分布式内存计算平台,它克服了MapReduce在迭代式计算和交互式计算方面的不足. 相比于MapReduce,Spark能充分利用内存资源提高计算效率. 2.Spark计算框架 Driver程序启动很多workers,然后workers在(分布式)文件系统中读取数据后转化为RDD(弹性分布式数据集),最后对RD
java操作spark1.2.0
虽然推荐的是scala,但是还是试一下 package org.admln.java7OperateSpark; import java.util.Arrays; import java.util.List; import java.util.regex.Pattern; import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaPairRDD; import org.apache.spark.api.java
Spark菜鸟学习营Day1 从Java到RDD编程
Spark菜鸟学习营Day1 从Java到RDD编程 菜鸟训练营主要的目标是帮助大家从零开始,初步掌握Spark程序的开发. Spark的编程模型是一步一步发展过来的,今天主要带大家走一下这段路,让我们从一段最最基础的Java代码开始. 问题:Java有哪些数据结构 大致有如下几种,其中List与Map是最重要的: List Map Set Array Heap Stack Queue Tree 练习:构造一个1-5的List,把他们打印出来 写法1 List<Integer> input =
使用Java编写并运行Spark应用程序
我们首先提出这样一个简单的需求: 现在要分析某网站的访问日志信息,统计来自不同IP的用户访问的次数,从而通过Geo信息来获得来访用户所在国家地区分布状况.这里我拿我网站的日志记录行示例,如下所示: 1 121.205.198.92 - - [21/Feb/2014:00:00:07 +0800] "GET /archives/417.html HTTP/1.1" 200 11465 "http://shiyanjun.cn/archives/417.html/" &
Spark:用Scala和Java实现WordCount
http://www.cnblogs.com/byrhuangqiang/p/4017725.html 为了在IDEA中编写scala,今天安装配置学习了IDEA集成开发环境.IDEA确实很优秀,学会之后,用起来很顺手.关于如何搭建scala和IDEA开发环境,请看文末的参考资料. 用Scala和Java实现WordCount,其中Java实现的JavaWordCount是spark自带的例子($SPARK_HOME/examples/src/main/java/org/apache/spark
Spark RDD/Core 编程 API入门系列 之rdd案例(map、filter、flatMap、groupByKey、reduceByKey、join、cogroupy等)(四)
声明: 大数据中,最重要的算子操作是:join !!! 典型的transformation和action val nums = sc.parallelize(1 to 10) //根据集合创建RDD map适用于 package com.zhouls.spark.cores import org.apache.spark.{SparkConf, SparkContext} /** * Created by Administrator on 2016/9/27. */object Transfo
spark 中的RDD编程 -以下基于Java api
1.RDD介绍: RDD,弹性分布式数据集,即分布式的元素集合.在spark中,对所有数据的操作不外乎是创建RDD.转化已有的RDD以及调用RDD操作进行求值.在这一切的背后,Spark会自动将RDD中的数据分发到集群中,并将操作并行化. Spark中的RDD就是一个不可变的分布式对象集合.每个RDD都被分为多个分区,这些分区运行在集群中的不同节点上.RDD可以包含Python,Java,Scala中任意类型的对象,甚至可以包含用户自定义的对象. 用户可以使用两种方法创建
java spark-streaming接收TCP/Kafka数据
本文将展示 1.如何使用spark-streaming接入TCP数据并进行过滤: 2.如何使用spark-streaming接入TCP数据并进行wordcount: 内容如下: 1.使用maven,先解决pom依赖 <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-streaming-kafka_2.10</artifactId> <version>1
Spark1.4从HDFS读取文件运行Java语言WordCounts
Hadoop:2.4.0 Spark:1.4.0 Ubuntu 14.0 1.首先启动Hadoop的HDFS系统. HADOOP_HOME/sbin/start-dfs.sh 2.在Linux中生成一个文件test.txt,保存在/home/testjars/目录下 3.通过hadoop fs -put命令上传 hadoop fs -put /home/testjars/test.txt 4.在文件系统中查看: 记住路径:hdfs://localhost:9000/u
Spark1.4从HDFS读取文件运行Java语言WordCounts并将结果保存至HDFS
本次实验相关信息如下: 操作系统:Ubuntu 14 Hadoop版本:2.4.0 Spark版本:1.4.0 运行前提是Hadoop与Spark均已正确安装配置 2.在Linux中生成一个文件test.txt,保存在/home/testjars/目录下 3.通过hadoop fs -put命令上传 hadoop fs -put /home/testjars/test.txt 4.在文件系统中查看: (Spark1.4 官方文档中的一段) 记住路径:hdfs://localhost:900
使用java开发spark的wordcount程序(多种实现)
package spark; import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaPairRDD; import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.JavaSparkContext; import org.apache.spark.sql.SparkSession; import scala.Tuple2
spark之java程序开发
spark之java程序开发 1.Spark中的Java开发的缘由: Spark自身是使用Scala程序开发的,Scala语言是同时具备函数式编程和指令式编程的一种混血语言,而Spark源码是基于Scala函数式编程来给予设计的,Spark官方推荐Spark的开发人员基于Scala的函数式编程来实现Spark的Job开发,但是目前Spark在生产上的主流开发语言仍然是Java,造成这一事实的原因主要有以下几点: A.Java目前已经成为行业内的主流语言,社区相当活跃,相比于Scala而言,Jav
基于Java+SparkStreaming整合kafka编程
一.下载依赖jar包 具体可以参考:SparkStreaming整合kafka编程 二.创建Java工程 太简单,略. 三.实际例子 spark的安装包里面有好多例子,具体路径:spark-2.1.1-bin-hadoop2.7\examples. JavaDirectKafkaWordCount.java package com.spark.test; import java.util.HashMap; import java.util.HashSet; import java.util.Ar
Hadoop概念学习系列之Java调用Shell命令和脚本,致力于hadoop/spark集群(三十六)
前言 说明的是,本博文,是在以下的博文基础上,立足于它们,致力于我的大数据领域! http://kongcodecenter.iteye.com/blog/1231177 http://blog.csdn.net/u010376788/article/details/51337312 http://blog.csdn.net/arkblue/article/details/7897396 第一种:普通做法 首先,编号写WordCount.scala程序. 然后,打成jar包,命名为WC.jar.
热门专题
ubuntu 强制睿频
gitlab如何删除分支
如何自定义UE中颜色 sql oracle sql
lisp scheme 區別
Spring Boot 数据库 mybatis sql 前端
wtimage文件夹
tp6模型增加一个不存在的属性
判断字符串是否为数字(Java
oracle如何查询clob字段
p1048采药java实现
setCompositionMode 覆盖
wps用户信息设置 丢失
u9300c lte上网
mysql 计算 多少天多少小时多少分
el-select 动态获取后台接口数据
cshtml5控制器带参数查询
用matlab进行两组数据的相关性分析 t检验
go c 服务端 优势
安卓沉浸式状态栏颜色
JedisConnectionFactory引用哪个依赖