首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
jieba excel 词频 词云
2024-08-30
运用jieba库统计词频及制作词云
一.对中国十九大报告做词频分析 import jieba txt = open("中国十九大报告.txt.txt","r",encoding="utf-8").read() words = jieba.lcut(txt) counts = {} for word in words: if len(word)==1: continue else: counts[word] = counts.get(word,0)+1 items = list(co
python 基于 wordcloud + jieba + matplotlib 生成词云
词云 词云是啥?词云突出一个数据可视化,酷炫.以前以为很复杂,不想python已经有成熟的工具来做词云.而我们要做的就是准备关键词数据,挑一款字体,挑一张模板图片,非常非常无脑.准备好了吗,快跟我一起动手吧 模块 本案例基于python3.6, 相关模块如下,安装都是直接 pip install <模块名>: wordcloud 作用如其名.本例核心模块,它把我们带权重的关键词渲染成词云 matplotlib 绘图模块,主要作用是把wordcloud生成的图片绘制出来并在窗口展示 numpy
jieba库与词云的使用——以孙子兵法为例
1.打开cmd安装jieba库和 matplotlib. 2.打开python,输入代码.代码如下: from wordcloud import WordCloud import matplotlib.pyplot as plt import jieba def create_word_cloud(filename): text = open("孙子兵法.txt","r",encoding='GBK').read() #打开自己想要的文本 wordlist = ji
Python基于jieba的中文词云
今日学习了python的词云技术 from os import path from wordcloud import WordCloud import matplotlib.pyplot as plt d=path.dirname(__file__) text=open(path.join(d,"data//constitution.txt")).read() # 步骤3-2:设置一张词云图对象 wordcloud = WordCloud(background_color="
jieba分词wordcloud词云
1.jieba库的基本介绍 (1).jieba是优秀的中文分词第三方库 中文文本需要通过分词获得单个的词语 jieba是优秀的中文分词第三方库,需要额外安装 jieba库提供三种分词模式,最简单只需掌握一个函数 (2).jieba分词的原理 Jieba分词依靠中文词库 利用一个中文词库,确定汉字之间的关联概率 汉字间概率大的组成词组,形成分词结果 除了分词,用户还可以添加自定义的词组 2.jieba库使用说明 (1).jieba分词的三种模式 精确模式.全模式.搜索引擎模式 精确模式:把文本精确
利用jieba库画词云
from wordcloud import WordCloud import matplotlib.pyplot as plt import jieba # 生成词云 def create_word_cloud(filename): with open('hongloumong.txt',encoding='utf-8') as f: text = f.read() wordlist = jieba.cut(text, cut_all=True) # 结巴分词 wl = " ".joi
python使用matplotlib画图,jieba分词、词云、selenuium、图片、音频、视频、文字识别、人脸识别
一.使用matplotlib画图 关注公众号"轻松学编程"了解更多. 使用matplotlib画柱形图 import matplotlib from matplotlib import pyplot as plt #数据视图 #配置字体 matplotlib.rcParams["font.sans-serif"] = ["simhei"] # 黑体 matplotlib.rcParams["font.family"] = &q
wordcloud + jieba 生成词云
利用jieba库和wordcloud生成中文词云. jieba库:中文分词第三方库 分词原理: 利用中文词库,确定汉字之间的关联概率,关联概率大的生成词组 三种分词模式: 1.精确模式:把文本精确的切分开,不存在冗余单词 2.全模式:把文本中所有可能的词语都扫描出来,有冗余 3.搜索引擎模式:在精确模式基础上,对长词再次切分 常用函数: jieba.lcut(s) #精确模式,返回列表类型的分词结果 jieba.lcut(s,cut_all=True) #全模式
Python3 装逼神器---词云(wordcloud)
词云 (Word Cloud)是对文本中出现频率较高的词语给予视觉化展示的图形, 是一种常见的文本挖掘的方法. 实例: 依赖包: # pip3 install wordcloud jieba matplotlib imageio wordcloud 模块介绍: class wordcloud.WordCloud( font_path=None, #(string)字体OTF or TTF路径,需要展现什么字体就把该字体路径+后缀名写上,如:font_path = '黑体.ttf'
用jieba库统计文本词频及云词图的生成
一.安装jieba库 :\>pip install jieba #或者 pip3 install jieba 二.jieba库解析 jieba库主要提供提供分词功能,可以辅助自定义分词词典. jieba库中包含的主要函数如下: jieba.cut(s) 精确模式,返回一个可迭代的数据类型 jieba.cut(s,cut_all=True)
Python统计excel表格中文本的词频,生成词云图片
import xlrd import jieba import pymysql import matplotlib.pylab as plt from wordcloud import WordCloud from collections import Counter import numpy as np def getExcelData(excel,txt): readbook = xlrd.open_workbook(excel) sheet = readbook.sheet_by_inde
py库: jieba (中文词频统计) 、collections (字频统计)、WordCloud (词云)
先来个最简单的: # 查找列表中出现次数最多的值 ls = [1, 2, 3, 4, 5, 6, 1, 2, 1, 2, 1, 1] ls = ["呵呵", "呵呵", "呵呵", "哈哈", "哈哈", "拉拉"] y = max(set(ls), key=ls.count) print(y) 一.字频统计: ( collections 库) 2017-10-27 这个库是python
jieba (中文词频统计) 、collections (字频统计)、WordCloud (词云)
py库: jieba (中文词频统计) .collections (字频统计).WordCloud (词云) 先来个最简单的: # 查找列表中出现次数最多的值 ls = [1, 2, 3, 4, 5, 6, 1, 2, 1, 2, 1, 1] ls = ["呵呵", "呵呵", "呵呵", "哈哈", "哈哈", "拉拉"] y = max(set(ls), key=ls.count)
用Python实现一个词频统计(词云+图)
第一步:首先需要安装工具python 第二步:在电脑cmd后台下载安装如下工具: (有一些是安装好python电脑自带有哦) 有一些会出现一种情况就是安装不了词云展示库 有下面解决方法,需看请复制链接查看:https://www.lfd.uci.edu/~gohlke/pythonlibs/#wordcloud 第三步: 1.准备好你打算统计的文件,命名为 家.txt,保存到桌面 2.准备一个做背景的图片,命名为girl.jpg,同样保存到桌面 第四步:插入代码 import re # 正则表达
利用python实现简单词频统计、构建词云
1.利用jieba分词,排除停用词stopword之后,对文章中的词进行词频统计,并用matplotlib进行直方图展示 # coding: utf-8 import codecs import matplotlib.pyplot as plt import jieba # import sys # reload(sys) # sys.setdefaultencoding('utf-8') from pylab import mpl mpl.rcParams['font.sans-serif']
使用jieba和wordcloud进行中文分词并生成《悲伤逆流成河》词云
因为词云有利于体现文本信息,所以我就将那天无聊时爬取的<悲伤逆流成河>的评论处理了一下,生成了词云. 关于爬取影评的爬虫大概长这个样子(实际上是没有爬完的): #!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2018/10/15 16:34 # @Author : Sa.Song # @Desc : 爬取买猫眼电影悲伤逆流成河的评论 # @File : maoyan_BS.py # @Software: PyCharm impor
已知词频生成词云图(数据库到生成词云)--generate_from_frequencies(WordCloud)
词云图是根据词出现的频率生成词云,词的字体大小表现了其频率大小. 写在前面: 用wc.generate(text)直接生成词频的方法使用很多,所以不再赘述. 但是对于根据generate_from_frequencies()给定词频如何画词云图的资料找了很久,下面只讲这种方法. generate_from_frequencies适用于我已知词及其对应的词频是多少(已有数据库),不需要分词的情况下. 官方文档说generate_from_frequencies函数的参数是array of tupl
python jieba 词云
#!/usr/bin/python # coding:utf-8 # 绘制一个<三体>全集词云 # pip install jieba # pip install matplotlib # pip install scipy # pip install wordcloud import sys from collections import Counter import jieba.posseg as psg import matplotlib.pyplot as plt from scipy
jieba库与好玩的词云的学习与应用实现
经过了一些学习与一些十分有意义的锻(zhe)炼(mo),我决定尝试一手新接触的python第三方库 ——jieba库! 这是一个极其优秀且强大的第三方库,可以对一个文本文件的所有内容进行识别,分词,甚至是根据猜测的词义形成字典! 这么好用的库不去了解实在是可惜啊!!! 那么第一步,我们当然是先安装它了! 步骤很简单! 就是我们以往的cmd命令行安装即可: 接下来让我们了解一下它的基本语法吧! jieba库有三个基本的模式:精确模式.全模式.搜索引擎模式 精确模式:试图将语句最精确的切分,不存在冗
广师大学习笔记之文本统计(jieba库好玩的词云)
1.jieba库,介绍如下: (1) jieba 库的分词原理是利用一个中文词库,将待分词的内容与分词词库进行比对,通过图结构和动态规划方法找到最大概率的词组:除此之外,jieba 库还提供了增加自定义中文单词的功能. (2) jieba 库支持3种分词模式: 精确模式:将句子最精确地切开,适合文本分析. 全模式:将句子中所以可以成词的词语都扫描出来,速度非常快,但是不能消除歧义. 搜索引擎模式:在精确模式的基础上,对长分词再次切分,提高召回率,适合搜索引擎分词. 2.按安装jieba库 (1)
jieba 库的使用和好玩的词云
jieba库的使用: (1) jieba库是一款优秀的 Python 第三方中文分词库,jieba 支持三种分词模式:精确模式.全模式和搜索引擎模式,下面是三种模式的特点. 精确模式:试图将语句最精确的切分,不存在冗余数据,适合做文本分析 全模式:将语句中所有可能是词的词语都切分出来,速度很快,但是存在冗余数据 搜索引擎模式:在精确模式的基础上,对长词再次进行切分. # -*- coding: utf-8 -*- import jieba seg_str = "好好学习,天天向上."
热门专题
common.css下载
web自动化测试下拉框选择
JArray 添加新项
selectpicker 事件
python 不同的线粗细不一样
word2010如何从任意页开始设置页码
mysql报错1051
kicad符号库创建单元A和单元B
使用cmd发送sysylog
图片文件上传目录不能执行php文件
vue项目的打包部署
openstack virsh 修改虚拟机IP
apache maven 3.6.1下载
openhtmltopdf 加载不了Windows 字体
halcon联合编程
layui 下拉框显示在最外层
journal 翻页
更改docker镜像下载位置
linux ifconfig不存在
php操作mysql数据库