首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
Logistic预测和KNN预测的区别
2024-10-31
scikit-learn中机器学习模型比较(逻辑回归与KNN)
本文源自于Kevin Markham 的模型评估:https://github.com/justmarkham/scikit-learn-videos/blob/master/05_model_evaluation.ipynb 应办事项: 我的监督学习应该使用哪一个模型 我的模型中应该选择那些调整参数 如何估计模型在样本数据外的表现 评论: 分类任务:预测未知鸢尾花的种类 用三个分类模型:KNN(K=1),KNN(K=5),逻辑回归 需要一个选择模型的方法:模型评估 1. 训练测试整个数据集 在
股票价格涨跌预测—基于KNN分类器
code{white-space: pre;} pre:not([class]) { background-color: white; }if (window.hljs && document.readyState && document.readyState === "complete") { window.setTimeout(function() { hljs.initHighlighting(); }, 0);}.main-container {
Eviews 9.0新版本新功能——预测(Auto-ARIMA预测、VAR预测)
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 9.预测功能 新增需要方法的预测功能:Auto-ARIMA预测.VAR预测.eviews9.0下载链接:[软件] EViews 9 的时代已经来临!(附安装包.升级包.破解补丁.教程) 一.Auto-ARIMA预测 Auto-ARIMA预测是基于ARIMA模型之上,系统的预测方法.Eviews 9提供了便捷方式,给研究者提供了一个一般模型预测的
线性回归 - LinearRegression - 预测糖尿病 - 量化预测的质量
线性回归是分析一个变量与另外一个或多个变量(自变量)之间,关系强度的方法. 线性回归的标志,如名称所暗示的那样,即自变量与结果变量之间的关系是线性的,也就是说变量关系可以连城一条直线. 模型评估:量化预测的质量 https://scikit-learn.org/stable/modules/model_evaluation.html#model-evaluation 线性回归的 7种 预测质量方法, 1.导包, # 导包 import numpy as np import matplotlib.
tensorflow knn 预测房价 注意有 Min-Max Scaling
示例数据: 0.00632 18.00 2.310 0 0.5380 6.5750 65.20 4.0900 1 296.0 15.30 396.90 4.98 24.00 0.02731 0.00 7.070 0 0.4690 6.4210 78.90 4.9671 2 242.0 17.80 396.90 9.14 21.60 0.02729 0.00 7.070 0 0.4690 7.1850 61.10 4.9671 2 242.0 17.80 392.83 4.03 34.70 0.0
数据预测算法-ARIMA预测
简介 ARIMA: AutoRegressive Integrated Moving Average ARIMA是两个算法的结合:AR和MA.其公式如下: 是白噪声,均值为0, C是常数. ARIMA的前半部分就是Autoregressive:, 后半部分是moving average:. AR实际上就是一个无限脉冲响应滤波器(infinite impulse resopnse), MA是一个有限脉冲响应(finite impulse resopnse),输入是白噪声. ARIMA里面的I指In
Kmeans算法与KNN算法的区别
最近研究数据挖掘的相关知识,总是搞混一些算法之间的关联,俗话说好记性不如烂笔头,还是记下了以备不时之需. 首先明确一点KNN与Kmeans的算法的区别: 1.KNN算法是分类算法,分类算法肯定是需要有学习语料,然后通过学习语料的学习之后的模板来匹配我们的测试语料集,将测试语料集合进行按照预先学习的语料模板来分类 2Kmeans算法是聚类算法,聚类算法与分类算法最大的区别是聚类算法没有学习语料集合. K-means算法是聚类分析中使用最广泛的算法之一.它把n个对象根据他们的属性分为k个聚类以便使得
(转载)微软数据挖掘算法:Microsoft 时序算法之结果预测及其彩票预测(6)
前言 本篇我们将总结的算法为Microsoft时序算法的结果预测值,是上一篇文章微软数据挖掘算法:Microsoft 时序算法(5)的一个总结,上一篇我们已经基于微软案例数据库的销售历史信息表,利用Microsoft时序算法对其结果进行了预测,并且相应形成了折线预测图和模型依赖属性,有兴趣的同学可以点击查看,但是上篇文章的能给出的只是一个描述趋势的折线图,从图中我们能分析出的知识也只能通过语言描述,而这里面缺少更确切的数据支撑,作为一个凡事以数据说话的年代显然这是不够的,本篇我们将根据上一篇的预
SPSS分析技术:无序多元Logistic回归模型;美国总统大选的预测历史及预测模型
SPSS分析技术:无序多元Logistic回归模型:美国总统大选的预测历史及预测模型 在介绍有序多元Logistic回归分析的理论基础时,介绍过该模型公式有一个非常重要的假设,就是自变量对因变量多个类别(因变量是定序数据)的影响程度是相同的.如果因变量有4个水平,那么有序多元逻辑回归分析最终会产生3个回归方程,这些回归方程除了常数项以外,其余的部分都是一样的,这就体现了模型的假设.因为有这个假设的存在,所以做有序多元Logistic回归分析时,可以同时输出平行性检验结果.如果检验结果不通过,那么
python多分类预测模版,输出支持度,多种分类器,str的csv转float
预测结果为1到11中的1个 首先加载数据,训练数据,训练标签,预测数据,预测标签: if __name__=="__main__": importTrainContentdata() importTestContentdata() importTrainlabeldata() importTestlabeldata() traindata = [] testdata = [] trainlabel = [] testlabel = [] def importTrainContentda
从2019-nCoV趋势预测问题,联想到关于网络安全态势预测问题的讨论
0. 引言 在这篇文章中,笔者希望和大家讨论一个话题,即未来趋势是否可以被精确或概率性地预测. 对笔者所在的网络安全领域来说,由于网络攻击和网络入侵常常变现出随机性.非线性性的特征,因此纯粹的未来预测是非常困难的.笔者希望通过对2019Nconv疫情的趋势预测问题的研究,搞清楚一个问题,即舆情的数据是否可以预测?如何预测? 同时我们将[疫情预测]和[网络安全的趋势预测]进行横向对比,阐述网络安全领域态势预测的主要技术挑战. 1. 我们为什么需要态势预测 在日益复杂的网络环境和动态变化的攻防场景下
腾讯技术工程 | 基于Prophet的时间序列预测
预测未来永远是一件让人兴奋而又神奇的事.为此,人们研究了许多时间序列预测模型.然而,大部分的时间序列模型都因为预测的问题过于复杂而效果不理想.这是因为时间序列预测不光需要大量的统计知识,更重要的是它需要将问题的背景知识融入其中.为此,Prophet充分的将两者融合了起来,提供了一种更简单.灵活的预测方式,并且在预测准确率上达到了与专业分析师相媲美的程度.如果你还在为时间序列预测而苦恼,那就一起走进兴奋而又神奇的Prophet世界吧. 前言 时间序列预测一直是预测问题中的难点,人们很难找到一个适用
用python做时间序列预测九:ARIMA模型简介
本篇介绍时间序列预测常用的ARIMA模型,通过了解本篇内容,将可以使用ARIMA预测一个时间序列. 什么是ARIMA? ARIMA是'Auto Regressive Integrated Moving Average'的简称. ARIMA是一种基于时间序列历史值和历史值上的预测误差来对当前做预测的模型. ARIMA整合了自回归项AR和滑动平均项MA. ARIMA可以建模任何存在一定规律的非季节性时间序列. 如果时间序列具有季节性,则需要使用SARIMA(Seasonal ARIMA)建模,后续会
推断(inference)和预测(prediction)
上二年级的大儿子一直在喝无乳糖牛奶,最近让他尝试喝正常牛奶,看看反应如何.三天过后,儿子说,好像没反应,我可不可以说我不对乳糖敏感了. 我说,呃,这个问题不简单啊.你知道吗,这在统计学上叫推断. 儿子很好学,居然叫我解释什么叫推断. 好吧,那我就来卖弄一下. 老早之前,听机器学习的一个podcast,是总结前一年机器学习领域发生什么事情,最后一段P主说: 我们已经总结了这一年,那我们来预测(predict)一下明年吧,不过我觉得说predict不是那么准确,应该是做一下inference
现代中央处理器(CPU)是怎样进行分支预测的?
人们一直追求CPU分支预测的准确率,论文Simultaneous Subordinate Microthreading (SSMT)中给了一组数据,如果分支预测的准确率是100%,大多数应用的IPC会提高2倍左右. 为了比较不同分支预测算法的准确率,有个专门的比赛:Championship Branch Prediction(CPB).CPB-5的冠军是TAGE-SC-L,在TAGE-SC-L Branch Predictors Again中有详细描述: 但是分支预测准确率高意味着更复杂的算法,
【彩票】彩票预测算法(一):离散型马尔可夫链模型C#实现
前言:彩票是一个坑,千万不要往里面跳.任何预测彩票的方法都不可能100%,都只能说比你盲目去买要多那么一些机会而已. 已经3个月没写博客了,因为业余时间一直在研究彩票,发现还是有很多乐趣,偶尔买买,娱乐一下.本文的目的是向大家分享一个经典的数学预测算法的思路以及代码.对于这个马尔可夫链模型,我本人以前也只是听说过,研究不深,如有错误,还请赐教,互相学习. 1.马尔可夫链预测模型介绍 马尔可夫链是一个能够用数学方法就能解释自然变化的一般规律模型,它是由著名的俄国数学家马尔科夫在1910年左右提出的
白话贝叶斯理论及在足球比赛结果预测中的应用和C#实现
离去年“马尔可夫链进行彩票预测”已经一年了,同时我也计划了一个彩票数据框架的搭建,分析和预测的框架,会在今年逐步发表,拟定了一个目录,大家有什么样的意见和和问题,可以看看,留言我会在后面的文章中逐步改善:彩票数据框架与分析预测总目录.同时这篇文章也是“[彩票]彩票预测算法(一):离散型马尔可夫链模型C#实现”的兄弟篇.所以这篇文章还有一个标题,应该是:[彩票]彩票预测算法(二):朴素贝叶斯分类器在足球胜平负预测中的应用及C#实现. 以前了解比较多的是SVM,RF,特征选择和聚类分析,实际也做过一
【年终分享】彩票数据预测算法(一):离散型马尔可夫链模型实现【附C#代码】
原文:[年终分享]彩票数据预测算法(一):离散型马尔可夫链模型实现[附C#代码] 前言:彩票是一个坑,千万不要往里面跳.任何预测彩票的方法都不可能100%,都只能说比你盲目去买要多那么一些机会而已. 已经3个月没写博客了,因为业余时间一直在研究彩票,发现还是有很多乐趣,偶尔买买,娱乐一下.本文的目的是向大家分享一个经典的数学预测算法的思路以及代码.对于这个马尔可夫链模型,我本人以前也只是听说过,研究不深,如有错误,还请赐教,互相学习. 1.马尔可夫链预测模型介绍[1] 马尔可夫链是一个能够用数学
Spark技术在京东智能供应链预测的应用
1 背景 前段时间京东公开了面向第二个十二年的战略规划,表示京东将全面走向技术化,大力发展人工智能和机器人自动化技术,将过去传统方式构筑的优势全面升级.京东Y事业部顺势成立,该事业部将以服务泛零售为核心,着重智能供应能力的打造,核心使命是利用人工智能技术来驱动零售革新. 1.1 京东的供应链 京东一直致力于通过互联网电商建立需求侧与供给侧的精准.高效匹配,供应链管理是零售联调中的核心能力,是零售平台能力的关键体现,也是供应商与京东紧密合作的纽带,更是未来京东智能化商业体布局中的核心环节. 个
【机器学习PAI实践一】搭建心脏病预测案例
一.背景 心脏病是人类健康的头号杀手.全世界1/3的人口死亡是因心脏病引起的,而我国,每年有几十万人死于心脏病. 所以,如果可以通过提取人体相关的体侧指标,通过数据挖掘的方式来分析不同特征对于心脏病的影响,对于预测和预防心脏病将起到至关重要的作用.本文将会通过真实的数据,通过阿里云机器学习平台搭建心脏病预测案例. 二.数据集介绍 数据源: UCI开源数据集heart_disease 针对美国某区域的心脏病检查患者的体测数据,共303条数据.具体字段如下表: 字段名 含义 类型 描述 age 年龄
eviews 9.5新版本——平均预测、面板效应检验
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 一.界面优化 eviews9.5 更友好,可以任意自己修改. 二.关于预测功能的优化 9.5貌似在9.0预测基础上进行了一定优化,但还是那些,9.0的版本中已经找到很多优化,Auto-ARIMA预测.VAR预测. RMSE (Root Mean Squared Error)MAE (Mean Absolute Error)MAPE (Mean
热门专题
sql server declare用法
给定一个日期值,计算若干天后的日期值JAVA
镜像推动到harbor后怎么自动运行
h330 阵列卡 删除 raid
vb 鼠标 样式下载
配置samba服务器
git fetch 代码丢失
elementui前后端不分离
layui的tab修改切换选中的下划线
papership和zotero一起用坚果
docker pull php-fpm 很慢
mfc不同窗口的变量名能否一样
Ubuntu16.04用的liunx版本
kindedito更改插入视频代码
Prime time参数设置
web开发 用visual studio哪个版本
Android 特权app
SQLSERVER 查询第二条数据
windows2008r2配置实训
c#中cryptojs.aes加密