x = A\B; x = mldivide(A, B); matlab 在这里的求解与严格的数学意义是不同的, 如果 A 接近奇异,matlab 仍会给出合理的结果,但也会提示警告信息: 如果 A 为方阵,如果解存在的话,x = A\B 的解就是 Ax=B(代入就会成立) 如果 A 不为方阵,返回的是 Ax=B 的最小二乘解: 1. A 和 B 是 full 型矩阵(一般的矩阵) 2. A 为 sparse 型矩阵
SVD在餐馆菜肴推荐系统中的应用 摘要:餐馆可以分为很多类别,比如中式.美式.日式等等.但是这些类别不一定够用,有的人喜欢混合类别.对用户对菜肴的点评数据进行分析,可以提取出区分菜品的真正因素,利用这些因素我们可以估计人们对没去过的餐厅的看法.提取这些信息的方法就是SVD(Singular Value Decomposition).本文首先介绍SVD的数学原理,然后简单介绍推荐系统的相关原理,最后通过python编程实现简单的基于协同过滤的菜肴推荐系统. 关键词:SVD:推荐系统:python:
“隐语义”的真正背景 LSA(latent semantic analysis)潜在语义分析,也被称为LSI(latent semantic index),是Scott Deerwester, Susan T. Dumais等人在1990年提出来的一种新的索引和检索方法.该方法和传统向量空间模型(vector space model)一样使用向量来表示词(terms)和文档(documents),并通过向量间的关系(如夹角)来判断词及文档间的关系:而丌同的是,LSA将词和文档映射到潜