首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
mglearn.datasets都有哪些
2024-08-18
sklearn包中有哪些数据集你都知道吗?
注册了博客园一晃有3个月了,同时接触机器学习也断断续续的算是有1个月了.今天就用机器学习神器sklearn包的相关内容作为我的开篇文章吧. 本文将对sklearn包中的数据集做一个系统介绍,并简单说一下它们的使用. 道行尚浅,如正文描述有误还望小伙伴不吝赐教,不胜感激,即刻进入正文. 首先,一般机器学习的建模步骤是:数据收集 -> 特征工程 -> 模型选择 -> 模型训练 -> 模型评估 -> 超参数调整 -> 模型预测 -> 模型保存 由此可见,拥有大量优质的数
wave数据集的回归曲线
wave数据集的回归曲线 import matplotlib.pyplot as pltimport mglearnfrom scipy import sparseimport numpy as npimport matplotlib as mtimport pandas as pdfrom IPython.display import displayfrom sklearn.datasets import load_irisimport sklearn as skfrom sklearn.mo
Python机器学习基础教程-第2章-监督学习之线性模型
前言 本系列教程基本就是摘抄<Python机器学习基础教程>中的例子内容. 为了便于跟踪和学习,本系列教程在Github上提供了jupyter notebook 版本: Github仓库:https://github.com/Holy-Shine/Introduciton-2-ML-with-Python-notebook 系列教程总目录 Python机器学习基础教程 引子 先导入必要的包 import numpy as np import matplotlib.pyplot as plt i
Python机器学习基础教程-第2章-监督学习之K近邻
前言 本系列教程基本就是摘抄<Python机器学习基础教程>中的例子内容. 为了便于跟踪和学习,本系列教程在Github上提供了jupyter notebook 版本: Github仓库:https://github.com/Holy-Shine/Introduciton-2-ML-with-Python-notebook 系列教程总目录 Python机器学习基础教程 引子 先导入必要的包 import numpy as np import matplotlib.pyplot as plt i
二、【Python】机器学习-监督学习
关键词 分类(Classification) 回归(Regression) 泛化(Generalize) 过拟合(Overfitting) 欠拟合(Underfitting) 2.1 分类与回归 监督机器学习问题分为两类:分类(Classification)与回归(Regression) 分类:目的是预测类别标签,这些标签来自预定义的可选列表.分类问题一般分为二分类(Binary Classification)和多分类(Multiclass classfication). 在二分类问题中,将其中
sklearn机器学习算法--线性模型
线性模型 用于回归的线性模型 线性回归(普通最小二乘法) 岭回归 lasso 用于分类的线性模型 用于多分类的线性模型 1.线性回归 LinearRegression,模型简单,不同调节参数 #2.导入线性回归模型 from sklearn.linear_model import LinearRegression #3.实例化线性回归模型对象 lr = LinearRegression() #4.对训练集进行训练 lr.fit(X_train,y_train) #“斜率”参数(w,也叫作权重或系
Python 机器学习实战 —— 监督学习(上)
前言 近年来AI人工智能成为社会发展趋势,在IT行业引起一波热潮,有关机器学习.深度学习.神经网络等文章多不胜数.从智能家居.自动驾驶.无人机.智能机器人到人造卫星.安防军备,无论是国家级军事设备还是广泛的民用设施,都充斥着AI应用的身影.接下来的一系列文章将会由浅入深从不同角度分别介绍机器学习.深度学习之间的关系与区别,通过一系统的常用案例讲述它们的应用场景.本文将会从最常见的机器学习开始介绍相关的知识应用与开发流程. 目录 一.浅谈机器学习 二.基本概念 三.常用方法介绍 四.线性模型 五.
降维、特征提取与流形学习--非负矩阵分解(NMF)
非负矩阵分解(NMF)是一种无监督学习算法,目的在于提取有用的特征(可以识别出组合成数据的原始分量),也可以用于降维,通常不用于对数据进行重建或者编码. NMF将每个数据点写成一些分量的加权求和(与PCA相同),并且分量和系数都大于0, 只能适用于每个特征都是非负的数据(正负号实际上是任意的). 1.将NMF应用于模拟数据 应用NMF时,我们必须保证数据是正的 如图 两个分量的NMF:分量指向边界,所有的数据点都可以写成这两个分量的正数组合. 一个分量的NMF:分量指向平均值,指向这里可以对数据
逻辑回归&线性支持向量机
代码: # -*- coding: utf-8 -*- """ Created on Tue Jul 17 10:13:20 2018 @author: zhen """ from sklearn.linear_model import LogisticRegression from sklearn.svm import LinearSVC import mglearn import matplotlib.pyplot as plt x, y =
回归算法比较(线性回归,Ridge回归,Lasso回归)
代码: # -*- coding: utf-8 -*- """ Created on Mon Jul 16 09:08:09 2018 @author: zhen """ from sklearn.linear_model import LinearRegression, Ridge, Lasso import mglearn from sklearn.model_selection import train_test_split import
K邻近回归算法
代码: # -*- coding: utf-8 -*- """ Created on Fri Jul 13 10:40:22 2018 @author: zhen """ import mglearn from sklearn.neighbors import KNeighborsRegressor from sklearn.model_selection import train_test_split import matplotlib.pyp
h5py快速入门指南
h5py是Python语言用来操作HDF5的模块.下面的文章主要介绍h5py的快速入门指南,翻译自h5py的官方文档:http://docs.h5py.org/en/latest/quick.html .该翻译仅为个人学习h5py为目的,如有翻译不当之处,请速联系笔者或提供正确的翻译,非常感谢! 安装 使用Anaconda或者Miniconda: conda install h5py 用Enthought Canopy,可以使用GUI安装包安装或用 enpkg h5py 安装.用pip或setu
pytorch torchvision.ImageFolder的使用
参考:https://pytorch-cn.readthedocs.io/zh/latest/torchvision/torchvision-datasets/ torchvision.datasets Datasets 拥有以下API: __getitem__ __len__ Datasets都是 torch.utils.data.Dataset的子类,所以,他们也可以通过torch.utils.data.DataLoader使用多线程(python的多进程). 举例说明: torch.uti
K邻近分类算法
# -*- coding: utf-8 -*- """ Created on Thu Jun 28 17:16:19 2018 @author: zhen """ from sklearn.model_selection import train_test_split import mglearn import matplotlib.pyplot as plt x, y = mglearn.datasets.make_forge() x_trai
Spark SQL 编程API入门系列之SparkSQL数据源
不多说,直接上干货! SparkSQL数据源:从各种数据源创建DataFrame 因为 spark sql,dataframe,datasets 都是共用 spark sql 这个库的,三者共享同样的代码优化,生成以及执行流程,所以 sql,dataframe,datasets 的入口都是 sqlContext. 可用于创建 spark dataframe 的数据源有很多: SparkSQL数据源:RDD val sqlContext = new org.apache.spark.sql.SQL
sklearn机器学习算法--K近邻
K近邻 构建模型只需要保存训练数据集即可.想要对新数据点做出预测,算法会在训练数据集中找到最近的数据点,也就是它的“最近邻”. 1.K近邻分类 #第三步导入K近邻模型并实例化KN对象 from sklearn.neighbors import KNeighborsClassifier #其中n_neighbors为近邻数量 clf = KNeighborsClassifier(n_neighbors=3) #第四步对训练集进行训练 clf.fit(X_train,y_train) #查看训练集和
【小白学PyTorch】3 浅谈Dataset和Dataloader
文章目录: 目录 1 Dataset基类 2 构建Dataset子类 2.1 Init 2.2 getitem 3 dataloader 1 Dataset基类 PyTorch 读取其他的数据,主要是通过 Dataset 类,所以先简单了解一下 Dataset 类.在看很多PyTorch的代码的时候,也会经常看到dataset这个东西的存在.Dataset类作为所有的 datasets 的基类存在,所有的 datasets 都需要继承它. 先看一下源码: 这里有一个__getitem__函数,_
day 35初识数据库
一.数据库概述 1.什么是数据库?先来看看百度怎么说的. 数据库,简而言之可视为电子化的文件柜——存储电子文件的处所,用户可以对文件中的数据运行新增.截取.更新.删除等操作. 所谓“数据库”系以一定方式储存在一起.能予多个用户共享.具有尽可能小的冗余度.与应用程序彼此独立的数据集合. 百度的貌似不好理解啊,让我说啊,数据库是存储数据的地方,你这不是废话么?你你你你你说的对,哈哈,存数据的地方是存在哪里呢,存在硬盘上,为什么不是存在内存里面,因为内存无法永久保存.之前我们存数据都是使用的文
历时小半年总结之JAVA
一.JavaSE 1.多线程 (1).进程与线程的区别? 答:进程是所有线程的集合,每一个线程是进程中的一条执行路径,线程只是一条执行路径. (2).为什么要用多线程? 答:提高程序效率 (3).多线程创建方式? 答:继承Thread或Runnable 接口. (4).是继承Thread类好还是实现Runnable接口好? 答:Runnable接口好,因为实现了接口还可以继续继承.继承Thread类不能再继承. (5).你在哪里用到了多线程? 答:主要能体现到多线程提高程序效率. 举例:分批发送
Spark 官方文档(5)——Spark SQL,DataFrames和Datasets 指南
Spark版本:1.6.2 概览 Spark SQL用于处理结构化数据,与Spark RDD API不同,它提供更多关于数据结构信息和计算任务运行信息的接口,Spark SQL内部使用这些额外的信息完成特殊优化.可以通过SQL.DataFrames API.Datasets API与Spark SQL进行交互,无论使用何种方式,SparkSQL使用统一的执行引擎记性处理.用户可以根据自己喜好,在不同API中选择合适的进行处理.本章中所有用例均可以在spark-shell.pyspark shel
(转载)公开的海量数据集 Public Research-Quality Datasets
转载自:http://rensanning.iteye.com/blog/1601663 海量数据数据集 海量数据(又称大数据)已经成为各大互联网企业面临的最大问题,如何处理海量数据,提供更好的解决方案,是目前相当热门的一个话题.类似MapReduce. Hadoop等架构的普遍推广,大家都在构建自己的大数据处理,大数据分析平台. 相应之下,目前对于海量数据处理人才的需求也在不断增多,此类人才可谓炙手可热!越来越多的开发者把目光转移到海量数据的处理上.但是不是所有人都能真正接触到,或者有机会去处
热门专题
vs2013无法打开源文件
rhce7 练习环境搭建
kali linux虚拟机找不到USB网卡
tp5 子目录 nginx
php laravel8 Validator 验证字符串长度
jquery连接地址最新版
vue.js 字符串方法
IISCrypto使用手册
python实现从100到200的所有素数
unsaved-value用注解
confluence嵌套组配置
python爬取闲鱼二手交易信息
jq 获取 frameset内容
rust 重写 netty
PADS2D线无法转换板框
ESp32 ADC 地线
python计算缺边共同朋友数
一台机器迁移到另一台机器出现undefined symbol
vs tfs check out标记
sublime new name 之后怎么确认