BERT(Bidirectional Encoder Representations from Transformers)是谷歌AI研究人员最近发表的一篇论文:BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding.它通过在各种各样的NLP任务中呈现最先进的结果,包括问答(SQuAD v1.1).自然语言推理(MNLI)等,在机器学习社区中引起了轰动. BERT的关键技术创新是将Transf
参考:Familia的Github项目地址.百度NLP专栏介绍 Familia 开源项目包含文档主题推断工具.语义匹配计算工具以及基于工业级语料训练的三种主题模型:Latent Dirichlet Allocation(LDA).SentenceLDA 和Topical Word Embedding(TWE). 支持用户以“拿来即用”的方式进行文本分类.文本聚类.个性化推荐等多种场景的调研和应用.考虑到主题模型训练成本较高以及开源主题模型资源有限的现状,我们会陆续开放基于工业级语料训练的多个垂直
对前两篇获取到的词向量模型进行使用: 代码如下: import gensim model = gensim.models.Word2Vec.load('wiki.zh.text.model') flag=1 while(flag): word = input("Please input the key_word:\n") if word in model: print(model['word']) # 词相似度 result = model.most_similar(word) for