题目太长了!下载地址[传送门] 第1题 简述:识别图片上的数字. import numpy as np import scipy.io as scio import matplotlib.pyplot as plt import scipy.optimize as op #显示图片数据 def displayData(X): m = np.size(X, 0) #X的行数,即样本数量 n = np.size(X, 1) #X的列数,即单个样本大小 example_width = int(np.r
logistic回归的基本思想 logistic回归是一种分类方法,用于两分类问题.其基本思想为: a. 寻找合适的假设函数,即分类函数,用以预测输入数据的判断结果: b. 构造代价函数,即损失函数,用以表示预测的输出结果与训练数据的实际类别之间的偏差: c. 最小化代价函数,从而获取最优的模型参数. import numpy from numpy import * import matplotlib.pyplot as plt import random def loadDataSet(fil
1.添加项目maven添加依赖 or 导入jar包 or 使用jvm <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven
# -*- coding: utf-8 -*- """scikit-learn introduction Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1quaJafg43SN7S6cNwKFr0_WYn2ELt4Ph scikit-learn官方网站:https://scikit-learn.org/st
from mxnet import gluon,init from mxnet.gluon import loss as gloss, nn from mxnet.gluon import data as gdata from mxnet import nd,autograd import gluonbook as gb import sys # 读取数据 # 读取数据 mnist_train = gdata.vision.FashionMNIST(train=True) mnist_test
MLP实现 调整参数比较性能结果 # -*- coding: utf-8 -*- """ Created on Wed Aug 30 21:14:38 2017 @author: Administrator """ import numpy as np #导入numpy工具包 from os import listdir #使用listdir模块,用于访问本地文件 from sklearn.neural_network import MLPCla