首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
pix2pix损失函数tensorflow
2024-11-08
pix2pix-tensorflow搭建及其使用
目录 pix2pix-tensorflow搭建过程 1. 环境搭建 2. 环境说明 3. 开始搭建 4. 训练结果说明 5. 数据集 5.1 图片格式说明 5.3 从先用图片创建图像对 5.4 如何进行着色 6. 训练 6.1 图片对 6.2 上色 提示 7. 测试 8. Code Validation 9. 参考文献 pix2pix-tensorflow搭建过程 对抗神经网络 1. 环境搭建 参考:https://www.cnblogs.com/pprp/p/9463974.html 官方详细
TensorFlow 神经网络相关函数
TensorFlow 激活函数 激活操作提供用于神经网络的不同类型的非线性.这些包括平滑的非线性(sigmoid,tanh,elu,softplus,和softsign),连续的,但不是到处可微函数(relu,relu6,crelu和relu_x),和随机正规化(dropout). 所有激活操作应用于分量,并产生与输入张量相同形状的张量. tf.nn.relu tf.nn.relu6 tf.nn.crelu tf.nn.elu tf.nn.softplus tf.nn.softsign tf.n
Tensorflow进行POS词性标注NER实体识别 - 构建LSTM网络进行序列化标注
http://blog.csdn.net/rockingdingo/article/details/55653279 Github下载完整代码 https://github.com/rockingdingo/deepnlp/tree/master/deepnlp/pos 简介 这篇文章中我们将基于Tensorflow的LSTM模型来实现序列化标注的任务,以NLP中的POS词性标注为例实现一个深度学习的POS Tagger.文中具体介绍如何基于Tensorflow的LSTM cell单元来构建多
tensorflow 自定义损失函数示例
这个自定义损失函数的背景:(一般回归用的损失函数是MSE, 但要看实际遇到的情况而有所改变) 我们现在想要做一个回归,来预估某个商品的销量,现在我们知道,一件商品的成本是1元,售价是10元. 如果我们用均方差来算的话,如果预估多一个,则损失一块钱,预估少一个,则损失9元钱(少赚的). 显然,我宁愿预估多了,也不想预估少了. 所以,我们就自己定义一个损失函数,用来分段地看,当yhat 比 y大时怎么样,当yhat比y小时怎么样. (yhat沿用吴恩达课堂中的叫法) import tensorf
Tensorflow 损失函数及学习率的四种改变形式
Reference: https://blog.csdn.net/marsjhao/article/details/72630147 分类问题损失函数-交叉熵(crossentropy) 交叉熵描述的是两个概率分布之间的距离,分类中广泛使用的损失函数,公式如下 在网络中可以通过Softmax回归将前向传播得到的结果变为交叉熵要求的概率分数值.Tensorflow中,Softmax回归的参数被去掉,通过一层将神经网络的输出变为一个概率分布. 代码实现 import tensorflow as tf
tensorflow进阶篇-4(损失函数2)
Hinge损失函数主要用来评估支持向量机算法,但有时也用来评估神经网络算法.下面的示例中是计算两个目标类(-1,1)之间的损失.下面的代码中,使用目标值1,所以预测值离1越近,损失函数值越小: # Use for predicting binary (-1, 1) classes # L = max(0, 1 - (pred * actual)) hinge_y_vals = tf.maximum(., . - tf.multiply(target, x_vals)) hinge_y_out =
TensorFlow笔记-06-神经网络优化-损失函数,自定义损失函数,交叉熵
TensorFlow笔记-06-神经网络优化-损失函数,自定义损失函数,交叉熵 神经元模型:用数学公式比表示为:f(Σi xi*wi + b), f为激活函数 神经网络 是以神经元为基本单位构成的 激活函数:引入非线性激活因素,提高模型的表达能力 常用的激活函数有relu.sigmoid.tanh等 (1)激活函数relu:在Tensorflow中,用tf.nn.relu()表示 (2)激活函数sigmoid:在Tensorflow中,用tf.nn.sigmoid()表示 (3)激活函数tanh
tensorflow进阶篇-4(损失函数1)
L2正则损失函数(即欧拉损失函数),L2正则损失函数是预测值与目标函数差值的平方和.L2正则损失函数是非常有用的损失函数,因为它在目标值附近有更好的曲度,并且离目标越近收敛越慢: # L = (pred - actual)^2 l2_y_vals = tf.square(target - x_vals) l2_y_out = sess.run(l2_y_vals) L1正则损失函数(即绝对值损失函数).与L2正则损失函数对差值求平方差不同的是,L1正则损失函数对差值求绝对值.L1正则在目标附近不
机器学习之路: tensorflow 自定义 损失函数
git: https://github.com/linyi0604/MachineLearning/tree/master/07_tensorflow/ import tensorflow as tf from numpy.random import RandomState ''' 模拟一个回归案例 自定义一个损失函数为: 当真实值y_更大的时候 loss = a(y_ - y) 当预测值y更大的时候 loss = b(y - y_) loss_less = 10 loss_more = 1 l
机器学习之路:tensorflow 深度学习中 分类问题的损失函数 交叉熵
经典的损失函数----交叉熵 1 交叉熵: 分类问题中使用比较广泛的一种损失函数, 它刻画两个概率分布之间的距离 给定两个概率分布p和q, 交叉熵为: H(p, q) = -∑ p(x) log q(x) 当事件总数是一定的时候, 概率函数满足: 任意x p(X = x) ∈[0, 1] 且 Σ p(X=x) = 1 也就是说 所有时间发生的概率都是0到1 之间 , 且总有一个时间会发生,概率的和就为1. 2 tensorflow中softmax: softmax回归可以作为学习算法来优化
tensorflow:实战Google深度学习框架第四章01损失函数
深度学习:两个重要特性:多层和非线性 线性模型:任意线性模型的组合都是线性模型,只通过线性变换任意层的全连接神经网络与单层神经网络没有区别. 激活函数:能够实现去线性化(神经元的输出通过一个非线性函数). 多层神经网络:能够解决异或问题,深度学习有组合特征提取的功能. 使用激活函数和偏置项的前向传播算法 import tensorflow as tf a = tf.nn.relu(tf.matmul(x,w1) + biases1) y = tf.nn.relu(tf.matmul(a,w2)
Tensorflow 损失函数(loss function)及自定义损失函数(三)
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/limiyudianzi/article/details/80697711 我主要分三篇文章给大家介绍tensorflow的损失函数,本篇为tensorflow自定义损失函数. (一)tensorflow内置的四个损失函数 (二)其他损失函数 (三)自定义损失函数 自定义损失函数是损失函数章节的结尾,学习自定义损失函数,对于提高分类
79、tensorflow计算一个五层神经网络的正则化损失系数、防止网络过拟合、正则化的思想就是在损失函数中加入刻画模型复杂程度的指标
''' Created on Apr 20, 2017 @author: P0079482 ''' import tensorflow as tf #获取一层神经网络边上的权重,并将这个权重的L2正则化损失加入名称为'losses'的集合中 def get_weight(shape,lambda1): #生成一个变量 var = tf.Variable(tf.random_normal(shape),dtype=tf.float32) #add_to_collection函数将这个新生成变量的L
吴裕雄 python 神经网络——TensorFlow 自定义损失函数
import tensorflow as tf from numpy.random import RandomState batch_size = 8 x = tf.placeholder(tf.float32, shape=(None, 2), name="x-input") y_ = tf.placeholder(tf.float32, shape=(None, 1), name='y-input') w1= tf.Variable(tf.random_normal([2, 1],
TensorFlow从0到1之TensorFlow损失函数(12)
正如前面所讨论的,在回归中定义了损失函数或目标函数,其目的是找到使损失最小化的系数.本节将介绍如何在 TensorFlow 中定义损失函数,并根据问题选择合适的损失函数. 声明一个损失函数需要将系数定义为变量,将数据集定义为占位符.可以有一个常学习率或变化的学习率和正则化常数. 在下面的代码中,设 m 是样本数量,n 是特征数量,P 是类别数量.这里应该在代码之前定义这些全局参数: 在标准线性回归的情况下,只有一个输入变量和一个输出变量: 在多元线性回归的情况下,输入变量不止一个,而输出变量仍为
TensorFlow损失函数
TensorFlow损失函数 正如前面所讨论的,在回归中定义了损失函数或目标函数,其目的是找到使损失最小化的系数.本文将介绍如何在 TensorFlow 中定义损失函数,并根据问题选择合适的损失函数. 声明一个损失函数需要将系数定义为变量,将数据集定义为占位符.可以有一个常学习率或变化的学习率和正则化常数. 在下面的代码中,设 m 是样本数量,n 是特征数量,P 是类别数量.这里应该在代码之前定义这些全局参数: 在标准线性回归的情况下,只有一个输入变量和一个输出变量: 在多元线性回归的情况下,输
Tensorflow 2.0 深度学习实战 —— 详细介绍损失函数、优化器、激活函数、多层感知机的实现原理
前言 AI 人工智能包含了机器学习与深度学习,在前几篇文章曾经介绍过机器学习的基础知识,包括了监督学习和无监督学习,有兴趣的朋友可以阅读< Python 机器学习实战 >.而深度学习开始只是机器学习的一分支领域,它更强调从连续的层中进行学习,这种层级结构中的每一层代表不同程序的抽象,层级越高,抽象程度越大.这些层主要通过神经网络的模型学习得到的,最大的模型会有上百层之多.而最简单的神经网络分为输入层,中间层(中间层往往会包含多个隐藏层),输出层.下面几篇文章将分别从前馈神经网络 FNN.卷积神
『TensorFlow』网络操作API_中_损失函数及分类器
一.误差值 度量两个张量或者一个张量和零之间的损失误差,这个可用于在一个回归任务或者用于正则的目的(权重衰减). l2_loss tf.nn.l2_loss(t, name=None) 解释:这个函数的作用是利用 L2 范数来计算张量的误差值,但是没有开方并且只取 L2 范数的值的一半,具体如下: output = sum(t ** 2) / 2 输入参数: t: 一个Tensor.数据类型必须是一下之一:float32,float64,int64,int32,uint8,int16,int8,
『TensorFlow』SSD源码学习_其七:损失函数
Fork版本项目地址:SSD 一.损失函数介绍 SSD损失函数分为两个部分:对应搜索框的位置loss(loc)和类别置信度loss(conf).(搜索框指网络生成的网格) 详细的说明如下: i指代搜索框序号,j指代真实框序号,p指代类别序号,p=0表示背景, 中取1表示此时第i个搜索框和第j个类别框IOU大于阈值,此时真实框中对象类别为p. cip表示第i个搜索框对应类别p的预测概率. 二.分类损失函数 有了上图的分析,我们可以看具体实现了,首先我们看Lconf部分的计算,其分为最大化第一个累加
tensorflow进阶篇-4(损失函数3)
Softmax交叉熵损失函数(Softmax cross-entropy loss)是作用于非归一化的输出结果只针对单个目标分类的计算损失.通过softmax函数将输出结果转化成概率分布,然后计算真值概率分布的损失: # Softmax entropy loss # L = -actual * (log(softmax(pred))) - (1-actual)(log(1-softmax(pred))) unscaled_logits = tf.constant([[1., -3., 10.]]
tensorflow定义神经网络损失函数MSE
import numpy as np import tensorflow as tf y_pred = np.array([[1], [2], [3]],dtype=np.float32) y_real = np.array([[1], [1], [1]]) bias = np.array([1,2,3,4],dtype=np.float32) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) Input
热门专题
jmeter批量单个执行脚本
async/await是es几的语法
支持1500000波特率的串口调试工具
js字符串转list对象
tp5 对象返回一个{}
STL中对顺序表的定义
centos 256颜色
IDEA导入所有的maven包
windows10字体放大后模糊
抓包获取提交的json
sed替换换行符\n为\n
bind9 支持 HMAC-MD5 吗
wpf中对dategrid中修改的数据自动保存
C# MODBS TCP 通讯
swagger返回列表加说明
iphone8 plus div固定在底部
程序调试 F8 F9
webview添加侧滑
lazymap 使用
linux如何查看某块磁盘是否被使用