首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
pyhon拉普拉斯算子锐化图像
2024-11-08
使用二阶微分锐化图像(拉普拉斯算子)基本原理及Python实现
1. 拉普拉斯算子 1.1 简介 一种典型的各向同性的微分算子,可用于检测图像中灰度图片的区域 $$ \nabla^{2} f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}} $$ 根据上述的差分近似可以推导出 $$ \nabla^{2} f(x, y)=f(x+1, y)+f(x-1, y)+f(x, y+1)+f(x, y-1)-4 f(x, y) $$ 1.2 锐化过程 使用拉普拉斯过滤
利用matlab写一个简单的拉普拉斯变换提取图像边缘
可以证明,最简单的各向同性微分算子是拉普拉斯算子.一个二维图像函数 f(x,y) 的拉普拉斯算子定义为 其中,在 x 方向可近似为 同理,在 y 方向上可近似为 于是 我们得到满足以上三个公式的两个变量的离散拉普拉斯算子是 拉普拉斯变换所对应的滤波器模板为: 0 1 0 1 -4 1 0 1 0 使用matlab利用拉普拉斯算子试着提取一下图像的边缘 %使用拉普拉斯算子实现图像的边缘提取 close all;clear all;clc; I=imread('liftingbody
机器学习进阶-图像梯度计算-scharr算子与laplacian算子(拉普拉斯) 1.cv2.Scharr(使用scharr算子进行计算) 2.cv2.laplician(使用拉普拉斯算子进行计算)
1. cv2.Scharr(src,ddepth, dx, dy), 使用Scharr算子进行计算 参数说明:src表示输入的图片,ddepth表示图片的深度,通常使用-1, 这里使用cv2.CV_64F允许结果是负值, dx表示x轴方向算子,dy表示y轴方向算子 2.cv2.laplacian(src, ddepth) 使用拉普拉斯算子进行计算 参数说明: src表示输入的图片,ddepth表示图片的深度,这里使用cv2.CV_64F允许结果是负值 scharr算子, 从图中我们可以看出sch
paper 109 :图像处理中的拉普拉斯算子
1.基本理论 拉普拉斯算子是最简单的各向同性微分算子,具有旋转不变性.一个二维图像函数 的拉普拉斯变换是各向同性的二阶导数,定义为: 为了更适合于数字图像处理,将该方程表示为离散形式: 另外,拉普拉斯算子还可以表示成模板的形式,如图5-9所示.图5-9(a)表示离散拉普拉斯算子的模板,图5-9(b)表示其扩展模板,图5-9(c)则分别表示其他两种拉普拉斯的实现模板.从模板形式容易看出,如果在图像中一个较暗的区域中出现了一个亮点,那么用拉普拉斯运算就会使这个亮点变得更亮.因为图像中的边缘
Laplace(拉普拉斯)算子
[摘要] Laplace算子作为边缘检测之一,和Sobel算子一样也是工程数学中常用的一种积分变换,属于空间锐化滤波操作.拉普拉斯算子(Laplace Operator)是n维欧几里德空间中的一个二阶微分算子,定义为梯度(▽f)的散度(▽·f).拉普拉斯算子也可以推广为定义在黎曼流形上的椭圆型算子,称为拉普拉斯-贝尔特拉米算子.(百度百科) [原理] 拉普拉斯算子是二阶微分线性算子,在图像边缘处理中,二阶微分的边缘定位能力更强,锐化效果更好,因此在进行图像边缘处理时,直接采用二阶微分算子而不使用
【OpenCV】边缘检测:Sobel、拉普拉斯算子
推荐博文,博客.写得很好,给个赞. Reference Link : http://blog.csdn.net/xiaowei_cqu/article/details/7829481 一阶导数法:梯度算子 对于左图,左侧的边是正的(由暗到亮),右侧的边是负的(由亮到暗).对于右图,结论相反.常数部分为零.用来检测边是否存在. 梯度算子 Gradient operators 函数f(x,y)在(x,y)处的梯度为一个向量: 计算这个向量的大小为: 梯度的方向角为: Sobel算子 sobel算
数学之路-python计算实战(20)-机器视觉-拉普拉斯算子卷积滤波
拉普拉斯算子进行二维卷积计算,线性锐化滤波 # -*- coding: utf-8 -*- #线性锐化滤波-拉普拉斯算子进行二维卷积计算 #code:myhaspl@myhaspl.com import cv2 import numpy as np from scipy import signal fn="test6.jpg" myimg=cv2.imread(fn) img=cv2.cvtColor(myimg,cv2.COLOR_BGR2GRAY) srcimg=np.array(
高斯拉普拉斯算子(Laplace of Gaussian)
高斯拉普拉斯(Laplace of Gaussian) kezunhai@gmail.com http://blog.csdn.net/kezunhai Laplace算子作为一种优秀的边缘检测算子,在边缘检测中得到了广泛的应用.该方法通过对图像求图像的二阶倒数的零交叉点来实现边缘的检测,公式表示如下: 由于Laplace算子是通过对图像进行微分操作实现边缘检测的,所以对离散点和噪声比较敏感.于是,首先对图像进行高斯卷积滤波进行降噪处理,再采用Laplace算子进行边缘检测,就可以提高算子对噪声
opencv边缘检测-拉普拉斯算子
sobel算子一文说了,索贝尔算子是模拟一阶求导,导数越大的地方说明变换越剧烈,越有可能是边缘. 那如果继续对f'(t)求导呢? 可以发现"边缘处"的二阶导数=0. 我们可以利用这一特性去寻找图像的边缘. 注意有一个问题,二阶求导为0的位置也可能是无意义的位置 拉普拉斯算子推导过程 以x方向求解为例: 一阶差分:f'(x) = f(x) - f(x - 1) 二阶差分:f''(x) = f'(x+1) - f'(x) = (f(x + 1) - f(x)) - (f(x) - f(x
Opencv拉普拉斯算子做图像增强
Opencv拉普拉斯算子——图像增强 #include <iostream> #include <opencv2/opencv.hpp> using namespace std; using namespace cv; //拉普拉斯处理 cv::Mat laplaceMat(cv::Mat imgParam); int main(int argc, char *argv[]) { Mat image = imread(); if (image.empty()) { std::cou
Opencv3 Robert算子 Sobel算子 拉普拉斯算子 自定义卷积核——实现渐进模糊
#include <iostream>#include <opencv2/opencv.hpp> using namespace std;using namespace cv; //Robert算子int Demo_Robert(){ char win1[] = "window1"; char win2[] = "window2"; char win3[] = "window3"; Mat img1, img2, img3
OpenCV-跟我一起学数字图像处理之拉普拉斯算子
https://www.cnblogs.com/german-iris/p/4840647.html Laplace算子和Sobel算子一样,属于空间锐化滤波操作.起本质与前面的Spatial Filter操作大同小异,下面就通过Laplace算子来介绍一下空间锐化滤波,并对OpenCV中提供的Laplacian函数进行一些说明. 数学原理 离散函数导数 离散函数的导数退化成了差分,一维一阶差分公式和二阶差分公式分别为, Laplace算子的差分形式 分别对Laplace算子x,y两个方向的二阶
OpenCV笔记(3)(Canny边缘检测、高斯金字塔、拉普拉斯金字塔、图像轮廓、模板匹配)
一.Canny边缘检测 Canny边缘检测是一系列方法综合的结果.其中主要包含以下步骤: 1.使用高斯滤波器,平滑图像,滤除噪声. 2.计算图像中每个像素点的梯度强度和方向. 3.应用非极大值抑制(NMS:Non-Maximum Suppression),以消除边缘检测带来的杂散相应. 4.应用双阈值(Double-Threshold)检测来确定真实和潜在的边缘. 5.通过抑制孤立的弱边缘最终完成边缘检测. 1.高斯滤波器 平滑图像. 2.计算梯度和方向 使用X和Y方向的Sobel算子来分别计算
opencv —— Laplacian 拉普拉斯算子、二阶导数用于边缘检测
Laplacian 算子简介 求多元函数的二阶导数的映射又称为 Laplacian 算子: 计算拉普拉斯变换:Laplacian 函数 void Laplacian(InputArray src, OutputArray dst, int ddepth, int ksize = 1, double scale = 1, double delta = 0, int borderType = BORDER_DEFAULT); src,输入图像,填 Mat 类型即可,但需为单通道 8 位图像. d
python自编程序实现——robert算子、sobel算子、Laplace算子进行图像边缘提取
实现思路: 1,将传进来的图片矩阵用算子进行卷积求和(卷积和取绝对值) 2,用新的矩阵(与原图一样大小)去接收每次的卷积和的值 3,卷积图片所有的像素点后,把新的矩阵数据类型转化为uint8 注意: 必须对求得的卷积和的值求绝对值:矩阵数据类型进行转化. 完整代码: import cv2 import numpy as np # robert 算子[[-1,-1],[1,1]] def robert_suanzi(img): r, c = img.shape r_sunnzi = [[-1,-1
canny算子求图像边缘,edgebox那部分
过程: 1. 彩色图像转换为灰度图像 2. 对图像进行高斯模糊 3. 计算图像梯度,根据梯度计算图像边缘幅值与角度(这里其实用到了微分边缘检测算子来计算梯度幅值方向) 求x,y两个方向的梯度 求幅值与角度 4. 非最大信号压制处理(边缘细化) 也就是把角度分成4个值 得到角度之后,比较中心像素角度上相邻两个像素,如果中心像素小于其中任意一个,则舍弃该边缘像素点,否则保留. 5. 双阈值边缘连接处理 双阈值选择与边缘连接方法通过假设两个
Opencv Laplacian(拉普拉斯算子)
#include <iostream>#include <opencv2/opencv.hpp>#include <math.h> using namespace std;using namespace cv; //拉普拉斯 边缘计算void TLaplacian() { Mat img1, img2,gray_img,edge_img; char* win1 = "window1"; char* win2 = "window2"
在Latex中,拉普拉斯算子的小写符号l怎么表示
如下图所示的小写字母l,在Latex中不知道该如何表示,试过用\mathcal但是发现不行,因为\mathcal只支持大写字母. 正确方法: \ell
matlab图像处理程序大集合
1.图像反转 MATLAB程序实现如下:I=imread('xian.bmp');J=double(I);J=-J+(256-1); %图像反转线性变换H=uint8(J);subplot(1,2,1),imshow(I);subplot(1,2,2),imshow(H); 2.灰度线性变换MATLAB程序实现如下:I=imread('xian.bmp');subplot(2,2,1),imshow(I);title('原始图像');axis([50,250,50
paper 55:图像分割代码汇总
matlab 图像分割算法源码 1.图像反转 MATLAB程序实现如下:I=imread('xian.bmp');J=double(I);J=-J+(256-1); %图像反转线性变换H=uint8(J);subplot(1,2,1),imshow(I);subplot(1,2,2),imshow(H); 2.灰度线性变换 MATLAB程序实现如下:I=imread('xian.bmp');subplot(2,2,1),imshow(I);title('原始图像');axis([50,250,5
热门专题
linux怎样查找进程是活的
wx跳入详情页返回后位置不变
python dataframe归一化
ubuntu 终端护眼
springcloud 服务间调用 feign
kalide URL加密软件
element calendar结尾日期限制
pyqt实现for循环显示
django关联一张表的两个值
springboot国内外研究现状
二进制能够用在软件底层修改
微信公众号 JSSDK wx.getLocalimge
js 在删除数组中符合条件的数据
ipc omap 安装 mcsdk
利用Fidder抓取APP的数据体会于感悟
adobe acrobat xi pr破解版
mybatis怎么让某个方法执行完了自动提交
windows sever搭建服务器
wpf 图片缩小 不清楚
linux LDAP 同步AD