首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
python opencv 积分图计算局部平均值
2024-11-09
Opencv中integral计算积分图
Paul Viola和Michael Jones在2001年首次将积分图应用在图像特征提取上,在他们的论文"Rapid Object Detection using a Boosted Cascade of Simple Features"中,积分图被当作一种新的图像特征表征方式,可以把检测的Haar特征非常高效的计算出来,用于实时人脸检测系统. 积分图是一种能够描述全局信息的矩阵表示方法,其构造方式是积分图像上位置(i,j)处的值ii(i,j)是原图像(i,j)左上角方向所有像素的和
opencv::积分图计算
利用积分图像,可以计算在某象素的上-右方的或者旋转的矩形区域中进行求和.求均值以及标准方差的计算,并且保证运算的复杂度为O(). #include <opencv2/opencv.hpp> #include <iostream> using namespace cv; int main(int argc, char** argv) { Mat src = imread("D:/vcprojects/images/test.png", IMREAD_GRAYSCA
OpenCV——积分图计算
#include <opencv2/opencv.hpp> #include <iostream> #include "math.h" using namespace cv; using namespace std; int main(int argc, char** argv) { Mat src = imread(); if (src.empty()) { printf("could not load image...\n"); ; }
Matlab 快速多通道积分图计算函数
所谓快速多通道积分图计算,其实就是 cumsum2D. 我写了一个比较快的版本(比 VLFeat 的快),用 mex 编译一下就能用了. 代码 #include <string.h> #include <mex.h> #include <stdio.h> #include <stdint.h> // compute integral image template <typename T> void integral(const T* in, T*
Python用积分思想计算圆周率
[文本出自天外归云的博客园] 早上起来突然想求圆周率,1单位时圆的面积. 代码如下: from math import pow, sqrt def calc_circle_s_with(r, dy, x_slices): x_from_start_to_cc = sqrt(1 - pow(dy, 2)) dx = x_from_start_to_cc / x_slices x_to_edge = 1 - x_from_start_to_cc quarter_circle_s = 0 while
积分图(二) - Block - Match(统计)滤波器
原文地址(英文) 积分图 是 [Crow(1984 年)] 提出的用于提高多尺度透视投影中纹理的渲染速度的一种技术. 积分图最流行的应用是 快速归一化互相关 (fast normalized cross-correlation), Viola-Jones 目标检测框架, SURF 变换( Speeded Up Robust Feature). 本章介绍的是积分图在基本的块统计滤波器中的应用. 均值 随机变量 \(X=\{x_1,\dots,x_n\}\) 的离散分布的均值 \(\mu(X)\)
python+OpenCV 特征点检测
1.Harris角点检测 Harris角点检测算法是一个极为简单的角点检测算法,该算法在1988年就被发明了,算法的主要思想是如果像素周围显示存在多于一个方向的边,我们认为该点为兴趣点.基本原理是根据公式: 化简为求解矩阵,最后根据矩阵的特征值判断是否为角点 实现效果: 代码(不用OpenCV): # -*- coding: utf-8 -*- from pylab import * from PIL import Image from numpy import * from scipy.ndi
【AdaBoost算法】积分图代码实现
一.积分图介绍 定义:图像左上方的像素点值的和: 在Adaboost算法中可用于加速计算Haar或MB-LBP特征值,如下图: 二.代码实现 #include <opencv/highgui.h> #include <opencv/cv.h> #include <opencv2/imgproc/imgproc_c.h> using namespace cv; int calcIntImage(unsigned char *pucSrcImage, unsigned in
浅析人脸检测之Haar分类器方法:Haar特征、积分图、 AdaBoost 、级联
浅析人脸检测之Haar分类器方法 一.Haar分类器的前世今生 人脸检测属于计算机视觉的范畴,早期人们的主要研究方向是人脸识别,即根据人脸来识别人物的身份,后来在复杂背景下的人脸检测需求越来越大,人脸检测也逐渐作为一个单独的研究方向发展起来. 目前的人脸检测方法主要有两大类:基于知识和基于统计. Ø 基于知识的方法:主要利用先验知识将人脸看作器官特征的组合,根据眼睛.眉毛.嘴巴.鼻子等器官的特征以及相互之间的几何位置关系来检测人脸. Ø 基于统计的方法:将人脸看作一个整体的模式——二维像素矩
python+opencv实现车牌定位
写在前面 HIT大三上学期视听觉信号处理课程中视觉部分的实验三,经过和学长们实验的对比发现每一级实验要求都不一样,因此这里标明了是2019年秋季学期的视觉实验三. 由于时间紧张,代码没有进行任何优化,实验算法仅供参考. 实验要求 对给定的车牌进行车牌识别 实验代码 代码首先贴在这里,仅供参考 源代码 实验代码如下: import cv2 import numpy as np def lpr(filename): img = cv2.imread(filename) # 预处理,包括灰度处理,高斯
python opencv识别蓝牌车牌号 之 取出车牌号 (1/3)
概述 车牌识别是计算机视频图像识别技术在车辆牌照识别中的一种应用,通常来讲如果结合opencv进行车牌识别主要分为四个大步骤,分别为: 图像采集 车牌定位 分割车牌字符 字符识别 当然,如果结合了机器学习可能步骤会变得更为精简,但是从opencv基础方法开始也不失为一种学习进步,此案例仅仅从蓝牌车牌入手,作为学习交流用,暂不打算花时间研究绿牌.黄牌车等车牌识别. 图像采集我们直接掠过,现在假设我们已经完成了图像采集,得到了包含车牌的图片.我们直接从车牌定位开始. *** 文中的车辆.车牌均来自网
Python+opencv打开修图的正确方式get
先逼逼两句: 图像是 Web 应用中除文字外最普遍的媒体格式. 流行的 Web 静态图片有 JPEG.PNG.ICO.BMP 等.动态图片主要是 GIF 格式.为了节省图片传输流量,大型互联网公司还会定制特殊格式的图片,WEBP 格式就是一个代表. Python 除了数据分析,做图片处理也是非常好用的. 用 Python 做图片处理,最著名的库就是 PIL(Python Imaging Library)了,支持最新的 Python3,而且有许多新的特性,Pillow也成为了 Python 图片处
关于图计算&图学习的基础知识概览:前置知识点学习(Paddle Graph Learning (PGL))
关于图计算&图学习的基础知识概览:前置知识点学习(Paddle Graph Learning (PGL)) 欢迎fork本项目原始链接:关于图计算&图学习的基础知识概览:前置知识点学习(Paddle Graph L)https://aistudio.baidu.com/aistudio/projectdetail/4982973?contributionType=1 因为篇幅关系就只放了部分程序在第三章,如有需求可自行fork项目原始链接. 0.1图计算基本概念 首先看到百度百科定义: 图
搭建基于python +opencv+Beautifulsoup+Neurolab机器学习平台
搭建基于python +opencv+Beautifulsoup+Neurolab机器学习平台 By 子敬叔叔 最近在学习麦好的<机器学习实践指南案例应用解析第二版>,在安装学习环境的时候遇到一些问题,特此写个博客,希望可以帮助到有需要的人,同时也希望像我一样在摸索的人不要走太多的弯路,程序员应该多花时间在学习上,不应该把时间都浪费在折腾环境上面. 下载安装winpython 第一步,我们通过搜索引擎搜索到winPython,一般通过这个网站就可以下载,https://sourceforge.
关于图计算和graphx的一些思考[转]
原文链接:http://www.tuicool.com/articles/3MjURj “全世界的网络连接起来,英特纳雄耐尔就一定要实现.”受益于这个时代,互联网从小众的角落走到了历史的中心舞台.如果无远弗届的互联网将把会整个世界转化成了一个巨型网络,那么就让这一切首先从淘宝开始吧. 最近我们试图将淘宝的交易记录中的物品和人组成一个对分网络(bipartite network).对于这个网络的,我们有许多有趣的问题:这个网络中节点的度分布会是什么样?在这个网络中,是否也存在“权威节点”?是否也有
Python+OpenCV图像处理(一)
Python+OpenCV图像处理(一): 读取,写入和展示图片 调用摄像头拍照 调用摄像头录制视频 1. 读取.写入和展示图片 图像读入:cv2.imread() 使用函数cv2.imread() 读入图像.这幅图像应该在此程序的工作路径,或者给函数提供完整路径,第二个参数是要告诉函数应该如何读取这幅图片. cv2.IMREAD_COLOR:读入一副彩色图像.图像的透明度会被忽略, 这是默认参数. cv2.IMREAD_GRAYSCALE:以灰度模式读入图像 PS:调用opencv,就算图像的
积分图实现均值滤波的CUDA代码
没想到我2010年买的笔记本显卡GT330M 竟然还能跑CUDA,果断小试了一把,环境为CUDA6.5+VS2012,写了一个积分图实现均值滤波.类似于OpenCV的blur()函数. 使用lena.jpg做测试,效果如下: 代码在此: #include "cuda_runtime.h" #include "device_launch_parameters.h" #include <stdio.h> #include <opencv2
python opencv show图片,debug技巧
debug的时候可以直接把图片画出来debug. imshow函数就是python opencv的展示图片的函数,第一个是你要起的图片名,第二个是图片本身.waitKey函数是用来展示图片多久的,默认值为0,即不写参数时默认值为0,代表无限等待.当写参数时,例如waitKey(5),意思是等待5ms.另外当等待时间内无任何操作时等待结束后返回-1,当等待时间内有输入字符时,则返回字符的阿斯克码值. 主要通过while(char(waitKey())!=’q’){}这段代码来解释.这段代码的意思是
【python+opencv】直线检测+圆检测
Python+OpenCV图像处理—— 直线检测 直线检测理论知识: 1.霍夫变换(Hough Transform) 霍夫变换是图像处理中从图像中识别几何形状的基本方法之一,应用很广泛,也有很多改进算法.主要用来从图像中分离出具有某种相同特征的几何形状(如,直线,圆等).最基本的霍夫变换是从黑白图像中检测直线(线段). 2.Hough变换的原理是将特定图形上的点变换到一组参数空间上,根据参数空间点的累计结果找到一个极大值对应的解,那么这个解就对应着要寻找的几何形状的参数(比如说直线,那么就会得
Spark GraphX宝刀出鞘,图文并茂研习图计算秘笈与熟练的掌握Scala语言【大数据Spark实战高手之路】
Spark GraphX宝刀出鞘,图文并茂研习图计算秘笈 大数据的概念与应用,正随着智能手机.平板电脑的快速流行而日渐普及,大数据中图的并行化处理一直是一个非常热门的话题.图计算正在被广泛地应用于社交网络.电子商务,地图等领域.对于图计算的两个核心问题:图存储模式和图计算模型,Spark GraphX给出了近乎完美的答案, 而Spark GraphX作为图计算领域的屠龙宝刀,对Pregel API的支持更是让Spark GraphX如虎添翼.Spark GraphX可以轻而易举的完成基于度分布
热门专题
vb6 collection容量 256
TajimaD 绘图
cloudcompare 删除点云
C# 生成utf8文件 intellij 识别
C#解决方案未能使用提供程序“RSA
latex中\balance怎么用
jmeter获取请求body data
scroll-top记录上次位置
linux 上如何下载mysql
code runner如何编译头文件
centos7 解压tgz
ios 字符串 数组排序
springcloud 获取 请求body
youtube怎么不能复制链接
iframe设置父页面url
高德坐标和谷歌坐标 火星坐标
postgresql设置允许批量导入
xmind安装失败182
配置oracle client连接文件
服务器IDRAC怎么设置