# coding=utf-8 #共轭梯度算法求最小值 import numpy as np from scipy import optimize def f(x, *args): u, v = x a, b, c, d, e, f,g,h = args return a*u**g+ b*u*v + c*v**h + d*u + e*v + f def gradf(x, *args): u, v = x a, b, c, d, e, f,g,h = args gu = g*a*u + b*v +
最近总是有需要单独对某一个类型的通路进行超几何分布的p值计算,这里记录一下python包的计算方法 使用scipy的stat里面的hypergeom.sf方法进行富集分析的p值计算 hsaxxxxx AA and Linoleic metabolism KEGG pathways Pathways KEGG (Homo sapiens (human)) 59 17 3586 141 3.32E-11 ------------ set in set background in background
from scipy.stats import chi2 # 卡方分布from scipy.stats import norm # 正态分布from scipy.stats import t # t分布from scipy.stats import f # F分布import matplotlib.pyplot as pltimport numpy as npimport pandas as pdimport scipy.stats as statsfrom scipy.stats import
import numpy as np #Create an array of 1*10^7 elements arr = np.arange(1e7) #Converting ndarray to list larr = arr.tolist() #Create a 2D numpy array arr = np.zeros((3,3)) #Converting a array to matrix mat = np.matrix(arr) np.matrix('1,2,3;4,5,6;7,8,9