首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
R语言dataframe列选项
2024-10-31
R语言dataframe的常用操作总结
前言:近段时间学习R语言用到最多的数据格式就是data.frame,现对data.frame常用操作进行总结,其中函数大部分来自dplyr包,该包由Hadley Wickham所作,主要用于数据的清洗和整理. 一.创建 data.frame创建较为容易,调用data.frame函数即可.本文创建一个关于学生成绩的数据框,接下来大部分操作都对该数据框进行,其中学生成绩随机产生 > library(dplyr) #导入dplyr包 > options(digits = 0) #保留整数 >
R 语言DataFrame 排序
Sort:dd <- data.frame(b = factor(c("Hi","Med","Hi","Low"), levels = c("Low","Med","Hi"), ordered = TRUE), x = c("A","D","A","C"), y = c(8,3,9,
R语言分析(一)-----基本语法
一, R语言所处理的工作层: 解释一下: 最下面的一层为数据源,往上是数据仓库层,往上是数据探索层,包括统计分析,统计查询,还有就是报告 再往上的三层,分别是数据挖掘,数据展现和数据决策. 由上图可知,R语言是可以用于数据挖掘,数据展现,而后领导根据展现的数据来决策,R语言在数据展现的方面,拥有很强大的功能. 二,R语言的数据结构: 包括如下的几项:包括向量,矩阵,数组,数据框,列表和因子 1,向量: 创建向量的方法一共有三种,分别如下: 第一种,使用c()的这个方法: 由于博客中木有R语言
R 语言的Dataframe常用操作
上节我们简单介绍了Dataframe的定义,这节我们具体来看一下Dataframe的操作 首先,数据框的创建函数为 data.frame( ),参考R语言的帮助文档,我们来了解一下data.frame( )的具体用法: Usage data.frame(..., row.names = NULL, check.rows = FALSE, check.names = TRUE, fix.empty.names = TRUE, stringsAsFactors = default.stringsAs
r语言与dataframe
什么是DataFrame 引用 r-tutor上的定义: DataFrame 是一个表格或者类似二维数组的结构,它的各行表示一个实例,各列表示一个变量. 没错,DataFrame就是类似于Excel表格和MySQL数据库一样是一个结构化的数据体.而这种结构化的数据体是当代数据流编程中的中流砥柱,几乎所有先进算法的载体都是DataFrame,比如现在我们耳熟能详的逻辑回归算法.贝叶斯算法.支持向量机算法.XGBoost算法等等都建立在这个数据流编程的基础之上,我们可以在R.Python.Scala
R语言把DataFrame的一行变成向量
在R语言里面,DataFrame的一列数据本质上可以认为是一个向量或列表,但是一行数据不是. 今天有一个31列的数据集,由于放在第一行的变量名格式不规范,读入数据的时候不能顺带读入变量名.于是跳过首行,先直接读入数据,之后手动给DataFrame命名. 为了避免出错,把变量第一行作为DataFrame读入,于是得到一个只有一行的DataFrame. headers <- read_table2("headers.dat", col_names=FALSE) headers <
merge函数:R语言,根据相同的列或ID合并不同的文件
一般Excel就能实现根据相同的列或ID合并不同的文件,但对于大文件来说,比如几十个G的数据量,用Excel处理,不仅耗时,而且还会使电脑崩溃.R语言的优势就体现在这里了,处理大文件相当快. first<-read.table('/pheno/first.txt',header=T) first<-data.frame(first) rs123456761<-read.table("/SNP/rs123456761.ped",header=T) rs123456761
大数据平台R语言web UI应用架构 设计与开发
1. 系统拓扑图 在日常业务分析中,R是非常常用的分析工具,而当数据量较大时,用R语言需要需用更多的时间来完成训练模型,spark作为大规模数据处理框架,采用内存计算,可以短时间内完成大量的数据的处理及计算模型,但缺点是不能图形展示,R语言的sparkly则提供了R语言和Spark的接口,实现了在数据量大的情况下,应用Spark的快速数据分析和处理能力结合R语言的图形化展示功能,方便业务分析,模型训练. 但是要想使多人同时共享R和Spark,还需要其他的相关组件,下图展示了所有相关的组件及应用:
R语言之数据处理常用包
dplyr包是Hadley Wickham的新作,主要用于数据清洗和整理,该包专注dataframe数据格式,从而大幅提高了数据处理速度,并且提供了与其它数据库的接口:tidyr包的作者是Hadley Wickham, 该包用于“tidy”你的数据,这个包常跟dplyr结合使用. dplyr.tidyr包安装及载入 install.packages("dplyr") install.packages("tidyr") library(dplyr) library(t
R语言实战(七)图形进阶
本文对应<R语言实战>第11章:中级绘图:第16章:高级图形进阶 基础图形一章,侧重展示单类别型或连续型变量的分布情况:中级绘图一章,侧重展示双变量间关系(二元关系)和多变量间关系(多元关系)的绘图:高级绘图进阶一章介绍四种图形系统,主要介绍lattice和ggplot2包. ========================================================================= 散点图: 主要内容:把多个散点图组合起来形成一个散点图矩阵,以便可以同时
R语言实战(第二版)-part 1笔记
说明: 1.本笔记对<R语言实战>一书有选择性的进行记录,仅用于个人的查漏补缺 2.将完全掌握的以及无实战需求的知识点略去 3.代码直接在Rsudio中运行学习 R语言实战(第二版) part 1 入门 ----------第1章 R语言介绍-------------------- help.start() #帮助文档首页 demo() #R语言demo演示 demo(package = .packages(all.available = TRUE)) demo(image) #演示图像 ex
R语言作为BI中ETL的工具
R语言作为BI中ETL的工具,增删改 R语言提供了强大的R_package与各种数据库进行数据交互. 外加其强大数据变换清洗函数,为ETL提供一条方便快捷的道路. RODBC ROracal RMysql Rmongodb http://mirrors.ustc.edu.cn/CRAN/web/packages/rmongodb/vignettes/rmongodb_cheat_sheet.pdf step1 新建连接con,并查看其信息 library(RODBC) con<-odbcConn
R语言实战(三)基本图形与基本统计分析
本文对应<R语言实战>第6章:基本图形:第7章:基本统计分析 ================================================================================================================================================== 本章讨论的图形,主要用于分析数据前,对数据的初步掌握.想要对数据有一个初步的印象,最好的方式就是观察它,也就是将数据可视化.在这个过程中,我们
R语言实战(二)数据管理
本文对应<R语言实战>第4章:基本数据管理:第5章:高级数据管理 创建新变量 #建议采用transform()函数 mydata <- transform(mydata, sumx = x1 + x2, meanx = (x1 + x2)/2) 重编码 < 小于 <= 小于或等于 > 大于 >= 大于或等于 == 严格等于(比较浮点类型时慎用,易误判) != 不等于 !x 非x x | y x或y x & y x和y isTRUE(x) x是否为TRUE
用R语言分析我的fitbit计步数据
目标:把fitbit的每日运动记录导入到R语言中进行分析,画出统计图表来 已有原始数据:fitbit2014年每日的记录电子表格文件,全部数据点此下载,示例如下: 日期 消耗卡路里数 步 距离 攀爬楼层数 久坐不动的分钟数 不太活跃分钟数 中度活跃分钟数 非常活跃分钟数 2014年4月27日 2736 16581 11.84 7 1111 131 117 81 2014年4月28日 2514 12622 9.01 6 910 136 59 76 2014年4月29日 2231 8357 5.97
R语言实战(五)方差分析与功效分析
本文对应<R语言实战>第9章:方差分析:第10章:功效分析 ==================================================================== 方差分析: 回归分析是通过量化的预测变量来预测量化的响应变量,而解释变量里含有名义型或有序型因子变量时,我们关注的重点通常会从预测转向组别差异的分析,这种分析方法就是方差分析(ANOVA).因变量不只一个时,称为多元方差分析(MANOVA).有协变量时,称为协方差分析(ANCOVA)或多元协方差分析
R语言数据分析利器data.table包 —— 数据框结构处理精讲
R语言data.table包是自带包data.frame的升级版,用于数据框格式数据的处理,最大的特点快.包括两个方面,一方面是写的快,代码简洁,只要一行命令就可以完成诸多任务,另一方面是处理快,内部处理的步骤进行了程序上的优化,使用多线程,甚至很多函数是使用C写的,大大加快数据运行速度.因此,在对大数据处理上,使用data.table无疑具有极高的效率.这里我们主要讲的是它对数据框结构的快捷处理. 和data.frame的高度兼容 DT = data.table(x=rep(c("b&
R语言基因组数据分析可能会用到的data.table函数整理
R语言data.table包是自带包data.frame的升级版,用于数据框格式数据的处理,最大的特点快.包括两个方面,一方面是写的快,代码简洁,只要一行命令就可以完成诸多任务,另一方面是处理快,内部处理的步骤进行了程序上的优化,使用多线程,甚至很多函数是使用C写的,大大加快数据运行速度.因此,在对大数据处理上,使用data.table无疑具有极高的效率.这里主要介绍在基因组数据分析中可能会用到的函数. fread 做基因组数据分析时,常常需要读入处理大文件,这个时候我们就可以舍弃read.ta
R语言︱ 数据库SQL-R连接与SQL语句执行(RODBC、sqldf包)
要学的东西太多,无笔记不能学~~ 欢迎关注公众号,一起分享学习笔记,记录每一颗"贝壳"~ --------------------------- 数据库是极其重要的R语言数据导入源数据之地,读入包有sqldf.RODBC等.跟SQL server相连有RODBC,跟mySQL链接的有RMySQL.但是在R里面,回传文本会出现截断的情况,这一情况可把我弄得有点手足无措. 一.数据库读入--RODBC包 CRAN 里面的包 RODBC 提供了 ODBC的访问接口: odbcConnect
R语言学习笔记︱Echarts与R的可视化包——地区地图
笔者寄语:感谢CDA DSC训练营周末上完课,常老师.曾柯老师加了小课,讲了echart与R结合的函数包recharts的一些基本用法.通过对比谢益辉老师GitHub的说明文档,曾柯老师极大地简化了一些代码,可读性很强. 关于此包起源,百度联姻d3.js=echarts,echarts+R=recharts包(Yang Zhou和Taiyun Wei),谢益辉老师修改可以传递js参数,实现更多功能, 但是呢,谢益辉老师的改良版包还没发出来,于是该神就做了一个函数,先给大家试用(点赞谢益辉老师).
热门专题
left join on多表关联
可执行的接口测试用例
边框宽度是2像素,边框颜色是黑色,边框样式是细线,
set_index()与reset_index()区别
自动化测试报告生成框架
centos6安装yum
baseMapper 数据库字段不匹配
matlab 图形移动画线框
eclipse的checkstyle检查tab应该为2
华为防火墙local区域与trust通信
unity 滑动选择列表图片跟随显示
cocos creator 倒计时
php 操作shell
windows server 创建用户权限
unity粒子随声浪跳动
MFC GetClientRect用法
js model是啥
vue element admin在当前窗口打开页面
django model default 不生效
MySQL 按某个字段去重