step01_formula # -*- coding: utf-8 -*- """ 단순 선형회귀방정식 : x(1) -> y - y = a*X + b (a:기울기, b:절편) - error = Y - y """ import tensorflow as tf # 변수 정의 X = tf.placeholder(tf.float32) # 입력 : shape 생략 Y = tf.placeholder(tf.float32
kNN1 # -*- coding: utf-8 -*- """ kNN : 최근접 이웃 """ import numpy as np # 다차원배열, 선형대수 연산 import matplotlib.pyplot as plt # 1. 알려진 두 집단 x,y 산점도 시각화 plt.scatter(1.2, 1.1) # A 집단 plt.scatter(1.0, 1.0) plt.scatter(1.8, 0.8) # B 집단 p
实例要求:以sklearn库自带的iris数据集为例,使用sklearn估计器构建K-Means聚类模型,并且完成预测类别功能以及聚类结果可视化. 实例代码: import pandas as pd import matplotlib.pyplot as plt from sklearn.datasets import load_iris from sklearn.preprocessing import MinMaxScaler from sklearn.cluster import KMea
python信用评分卡(附代码,博主录制) https://study.163.com/course/introduction.htm?courseId=1005214003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share ## 1. Data Lending Club 2016年Q3数据:https://www.lendingclub.com/info/download-data.act
该示例所用的数据可从该链接下载,提取码为3y90,数据说明可参考该网页.该示例的“模型调参”这一部分引用了这篇博客的步骤. 数据前处理 导入数据 import pandas as pd import numpy as np from sklearn.cross_validation import train_test_split ### Load data ### Split the data to train and test sets data = pd.read_csv('data/loa