首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
sigmod函数对于阀值
2024-09-06
笔记+R︱Logistics建模简述(logit值、sigmoid函数)
本笔记源于CDA-DSC课程,由常国珍老师主讲.该训练营第一期为风控主题,培训内容十分紧凑,非常好,推荐:CDA数据科学家训练营 ---------------------------------- 一.logit值的来源 逻辑回归一般将因变量二分类变量的0-1转变为频率[0,1],变成odds(优势比,[0,+∞]),然后log一下成为Logit值([-∞,+∞]) 优势比就是:odds=P(y=1)/P(y=0) logit值:logit=log(odds) 什么是sigmoid函数? 先定
sigmod函数求导
sigmod函数: \[f(z)=\frac{1}{1+e^{-z}} \] 求导: \[\frac{\partial f(z)}{\partial z}=\frac{-1*-1*e^{-z}}{(1+e^{-z})^2} =\frac{e^{-z}}{(1+e^{-z})^2} =\frac{1+e^{-z}-1}{(1+e^{-z})^2} =\frac{1}{1+e^{-z}}-\frac{1}{(1+e^{-z})^2} =\frac{1}{1+e^{-z}}(1-\frac{1}{1+
sigmod函数
#include <cmath> //math.h double sigmod(double x) { return 1/(1+exp(-x)); }
tensorflow一些常用函数的使用注意
tf.abs() 求tensor中数据的绝对值 tf.sign() 每一个数据都执行sigmod函数,得到对应的数值 tf.reduce_sum() 对不同维度数据求和.注意:1:求和每一行 0:求和每一列 tf.cast() 数值转换 演示: def mytest_split(): A = tf.truncated_normal(shape=[5,6], dtype=tf.float32) used = tf.sign(tf.abs(A)) length = tf.reduce_sum(use
TensorFlow 实现分类操作的函数学习
函数:tf.nn.sigmoid_cross_entropy_with_logits(logits, targets, name=None) 说明:此函数是计算logits经过sigmod函数后的交叉熵值(即互熵损失),能帮助你更好的进行分类操作.对于一个不相互独立的离散分类任务,这个函数作用是去度量概率误差. 简单点就是去度量化. 实例: # output 的计算方法:max(x, 0) - x * z + log(1 + exp(-abs(x)) ) # logits 和 targets 必
Sigmoid函数与Softmax函数的理解
1. Sigmod 函数 1.1 函数性质以及优点 其实logistic函数也就是经常说的sigmoid函数,它的几何形状也就是一条sigmoid曲线(S型曲线). 其中z是一个线性组合,比如z可以等于:b + w1*x1 + w2*x2.通过代入很大的正数或很小的负数到g(z)函数中可知,其结果趋近于0或1 A logistic function or logistic curve is a common “S” shape (sigmoid curve). 也就是
one-stage object detectors(1)
2019/04/08 强烈推荐:深入理解one-stage目标检测算法 yolo系列 one-stage object detectors(YOLO and SSD) 在不专一的模型中,每个检测器应该能够处理图像中任何可能位置的各类物体;导致单个检测器趋向检测所有边界框,最终检测框结果趋向于折中的位置. 使用固定网格上的检测器是one-stage目标检测算法的主要思想,也是它们与基于候选框的目标检测方法(如R-CNN)的区别所在(实际上Faster R-CNN中RPN网络也采用网格检测). 使用
AI面试必备/深度学习100问1-50题答案解析
AI面试必备/深度学习100问1-50题答案解析 2018年09月04日 15:42:07 刀客123 阅读数 2020更多 分类专栏: 机器学习 转载:https://blog.csdn.net/T7SFOKzorD1JAYMSFk4/article/details/80972658 1.梯度下降算法的正确步骤,(正确步骤dcaeb)(梯度下降法其实是根据函数的梯度来确定函数的极小值),这里的问题与其说是梯度下降算法的步骤不如说类似图图像分类训练的整个流程:网络初始化-输入to输出-期望输
ML面试1000题系列(51-60)
本文总结ML面试常见的问题集 转载来源:https://blog.csdn.net/v_july_v/article/details/78121924 51.简单说下sigmoid激活函数 常用的非线性激活函数有sigmoid.tanh.relu等等,前两者sigmoid/tanh比较常见于全连接层,后者relu常见于卷积层.这里先简要介绍下最基础的sigmoid函数(btw,在本博客中SVM那篇文章开头有提过). sigmoid的函数表达式如下 其中z是一个线性组合,比如z可以等于:b + *
关于word2vec我有话要说
写在前面的话: 总结一下使用word2vec一年来的一些经验,因为自己在做的时候,很难在网上搜到word2vec的经验介绍,所以归纳出来,希望对读者有用. 这里不介绍word2vec的原理,因为原理介绍的资料网上很多 最后,由于本人知识有限,错误之处,还望指正. 1 word2vec 是word embedding 最好的工具吗? word2vec并非是效果最好的word embedding 工具.最容易看出的就是word2vec没有考虑语序,这里会有训练效果损失. 由于 word2vec 训
逻辑回归 Logistic Regression
逻辑回归(Logistic Regression)是广义线性回归的一种.逻辑回归是用来做分类任务的常用算法.分类任务的目标是找一个函数,把观测值匹配到相关的类和标签上.比如一个人有没有病,又因为噪声的干扰,条件的描述的不够完全,所以可能不确定正确,还希望得到一个概率,比如有病的概率是80%.也即P(Y|X),对于输入X,产生Y的概率,Y可取两类,1或者0. 推导 Sigmod函数 相当于线性模型的计算结果来逼近真实01标记的对数几率. 他的导数: 对数线性模型 概率P的值域是[0,1],线性函数
【深度学习】之Caffe的solver文件配置(转载自csdn)
原文: http://blog.csdn.net/czp0322/article/details/52161759 今天在做FCN实验的时候,发现solver.prototxt文件一直用的都是model里自带的,一直都对里面的参数不是很了解,所以今天认真学习了一下里面各个参数的意义. DL的任务中,几乎找不到解析解,所以将其转化为数学中的优化问题.sovler的主要作用就是交替调用前向传导和反向传导 (forward & backward) 来更新神经网络的连接权值,从而达到最小化loss,实际
第五章:Logistic回归
本章内容 □sigmod函数和logistic回归分类器 □最优化理论初步□梯度下降最优化算法□数据中的缺失项处理 这会是激动人心的一章,因为我们将首次接触到最优化算法.仔细想想就会发现,其实我们日常生活中遇到过很多最优化问题,比如如何在最短时间内从入点到达氏点?如何投人最少工作量却获得最大的效益?如何设计发动机使得油耗最少而功率最大?可风,最优化的作用十分强大.接下来,我们介绍几个最优化算法,并利用它们训练出一个非线性函数用于分类.读者不熟悉回归也没关系,第8章起会深入介绍这一主题.假设现在有
Theano入门神经网络(二) 实现一个XOR门
与非门的图片如下 示意图 详细解释: 1 定义变量的代码,包括了输入.权值.输出等.其中激活函数采用的是sigmod函数 # -*- coding: utf-8 -*- __author__ = 'Administrator' import theano import theano.tensor as T import random import numpy as np from itertools import izip #定义网络结构 #定义输入 x=T.vector() #定义权值W1 w
PRML读书会第七章 Sparse Kernel Machines(支持向量机, support vector machine ,KKT条件,RVM)
主讲人 网神 (新浪微博: @豆角茄子麻酱凉面) 网神(66707180) 18:59:22 大家好,今天一起交流下PRML第7章.第六章核函数里提到,有一类机器学习算法,不是对参数做点估计或求其分布,而是保留训练样本,在预测阶段,计算待预测样本跟训练样本的相似性来做预测,例如KNN方法. 将线性模型转换成对偶形式,就可以利用核函数来计算相似性,同时避免了直接做高维度的向量内积运算.本章是稀疏向量机,同样基于核函数,用训练样本直接对新样本做预测,而且只使用了少量训练样本,所以具有稀疏性,叫sp
BP神经网络推导过程详解
BP算法是一种最有效的多层神经网络学习方法,其主要特点是信号前向传递,而误差后向传播,通过不断调节网络权重值,使得网络的最终输出与期望输出尽可能接近,以达到训练的目的. 一.多层神经网络结构及其描述 下图为一典型的多层神经网络. 通常一个多层神经网络由L层神经元组成,其中:第1层称为输入层,最后一层(第L层)被称为输出层,其它各层均被称为隐含层(第2层~第L-1层). 令输入向量为: \[ \vec x = [x_1 \quad x_2 \quad \ldots \quad x_i \quad
Logistic回归模型和Python实现
回归分析是研究变量之间定量关系的一种统计学方法,具有广泛的应用. Logistic回归模型 线性回归 先从线性回归模型开始,线性回归是最基本的回归模型,它使用线性函数描述两个变量之间的关系,将连续或离散的自变量映射到连续的实数域. 模型数学形式: 引入损失函数(loss function,也称为错误函数)描述模型拟合程度: 使J(w)最小,求解优化问题得到最佳参数. Logistic回归 logistic回归(Logistic regression 或 logit regression)有时也被
一个 11 行 Python 代码实现的神经网络
一个 11 行 Python 代码实现的神经网络 2015/12/02 · 实践项目 · 15 评论· 神经网络 分享到:18 本文由 伯乐在线 - 耶鲁怕冷 翻译,Namco 校稿.未经许可,禁止转载!英文出处:iamtrask.欢迎加入翻译组. 概要:直接上代码是最有效的学习方式.这篇教程通过由一段简短的 python 代码实现的非常简单的实例来讲解 BP 反向传播算法. 代码如下: X = np.array([ [0,0,1],[0,1,1],[1,0,1],[1,1,1] ]) y
Matlab实现线性回归和逻辑回归: Linear Regression & Logistic Regression
原文:http://blog.csdn.net/abcjennifer/article/details/7732417 本文为Maching Learning 栏目补充内容,为上几章中所提到单参数线性回归.多参数线性回归和 逻辑回归的总结版.旨在帮助大家更好地理解回归,所以我在Matlab中分别对他们予以实现,在本文中由易到难地逐个介绍. 本讲内容: Matlab 实现各种回归函数 ========================= 基本模型 Y=θ0+θ1X1型---线性回归(直线拟合
Stanford机器学习---第四讲. 神经网络的表示 Neural Networks representation
原文 http://blog.csdn.net/abcjennifer/article/details/7749309 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归.Octave Tutorial.Logistic Regression.Regularization.神经网络.机器学习系统设计.SVM(Support Vector Machines 支持向量机).聚类.降维.异常检测.大规模机器学习等章节.所有内容均来自Standford公开课machine
热门专题
duilib代码设置Font
augustus下载安装
sqlcipher.exe 提取码
经纬度转换xy坐标算法
antv F2 平移
python 行为链 停顿等待
python 处理sql格式文件
jdk8到jdk15新特性
pycharm项目突然无法打开.dat文件
元素右边第一个大于该
matplotlib 去掉坐标轴
datetime算时间差
t检验 t值和p的关系
android应用在线升级服务
tomcat9 WebServlet注解不生效
layui 父窗口获取子窗口传递的参数
html提交按钮提交数据
win10 iis配置
uniapp前端处理高并发如何节流
linux 安装openssl