sklearn.linear_model.LinearRegression.score score(self, X, y, sample_weight=None) Returns the coefficient of determination R^2 of the prediction. The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) *
sklearn中调用PCA算法 PCA算法是一种数据降维的方法,它可以对于数据进行维度降低,实现提高数据计算和训练的效率,而不丢失数据的重要信息,其sklearn中调用PCA算法的具体操作和代码如下所示: #sklearn中调用PCA函数进行相关的训练和计算(自定义数据)import numpy as npimport matplotlib.pyplot as pltx=np.empty((100,2))x[:,0]=np.random.uniform(0.0,100.0,size=100)x[