首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
SLAM上的李群有什么用
2024-08-28
李群与李代数在slam中的应用
昨天,刚接触道了李群和李代数,查了许多资料,也看了一些视屏.今天来谈谈自己的感受. 李群是有一个挪威数学家提出的,在十九二十世纪得到了很大的发展. 其归于非组合数学,现在简单介绍李群和李代数的概念.群的定义是一种集合加上一种运算的代数结构.其集合记为A,运算记为 . ,当其满足以下四条性质时,就称其为(A,.)群. 为了大家更好的理解,我还是放上讲师(高博slam十四讲其四)的ppt吧. 矩阵旋转
从零开始一起学习SLAM | 为啥需要李群与李代数?
很多刚刚接触SLAM的小伙伴在看到李群和李代数这部分的时候,都有点蒙蒙哒,感觉突然到了另外一个世界,很多都不自觉的跳过了,但是这里必须强调一点,这部分在后续SLAM的学习中其实是非常重要的基础,不信你看看大神们的论文就知道啦. 关于李群李代数,其实高翔的<视觉SLAM十四讲>里推导什么的挺清楚了,本文就在高博的基础上用比较容易理解的语言讲述一下重点. 首先,假装(也可能是真的)自己是个小白,我们假想对面坐了一个大牛师兄,下面我们开启问答模式. 为啥需要李代数? 小白:师兄,我最近在学习SLAM
[SLAM] 01 "Simultaneous Localization and Mapping" basic knowledge
发信人: leecty (Terry), 信区: ParttimeJobPost标 题: 创业公司招SLAM 算法工程师发信站: 水木社区 (Thu Jun 16 19:18:24 2016), 站内 我们是一家年轻的初创公司,核心团队来自清华大学和中科院.依托强大的视觉SLAM算法,我们深入投身到机器人,虚拟现实,增强现实等前沿产业. 招聘:视觉SLAM 算法工程师 (可以兼职/实习) 要求:1. 熟悉SVO,SFM,ORB SLAM,LSD SLAM,PTSAM等算法,或至少熟悉用过其中任一
最近一年语义SLAM有哪些代表性工作?
点击"计算机视觉life"关注,置顶更快接收消息! 本文由作者刘骁授权发布,转载请联系原作者,个人主页http://www.liuxiao.org 目前 Semantic SLAM (注意不是 Semantic Mapping)工作还比较初步,可能很多思路还没有打开,但可以预见未来几年工作会越来越多.语义 SLAM 的难点在于怎样设计误差函数,将 Deep Learning 的检测或者分割结果作为一个观测,融入 SLAM 的优化问题中一起联合优化,同时还要尽可能做到至少 GPU 实时.
如何从零开始系统化学习视觉SLAM?
由于显示格式问题,建议阅读原文:如何从零开始系统化学习视觉SLAM? 什么是SLAM? SLAM是 Simultaneous Localization And Mapping的 英文首字母组合,一般翻译为:同时定位与建图.同时定位与地图构建.虽然听起来比较拗口,但SLAM却是三维视觉的核心技术,广泛应用于AR.自动驾驶.智能机器人.无人机等前沿热门领域.可以说凡是具有一定行动能力的智能体都拥有某种形式的SLAM系统.关于SLAM的具体应用场景介绍可以看<SLAM有什么用?> SLAM是计算机视
从零开始一起学习SLAM | 掌握g2o边的代码套路
点"计算机视觉life"关注,置顶更快接收消息! 小白:师兄,g2o框架<从零开始一起学习SLAM | 理解图优化,一步步带你看懂g2o代码>,以及顶点<从零开始一起学习SLAM | 掌握g2o顶点编程套路>我都学完啦,今天给我讲讲g2o中的边吧!是不是也有什么套路? 师兄:嗯,g2o的边比顶点稍微复杂一些,不过前面你也了解了许多g2o的东西,有没有发现g2o的编程基本都是固定的格式(套路)呢? 小白:是的,我现在按照师兄说的g2o框架和顶点设计方法,再去看g2
从零开始一起学习SLAM | 掌握g2o顶点编程套路
点"计算机视觉life"关注,置顶更快接收消息! ## 小白:师兄,上一次将的g2o框架<从零开始一起学习SLAM | 理解图优化,一步步带你看懂g2o代码>真的很清晰,我现在再去看g2o的那些优化的部分,基本都能看懂了呢! 师兄:那太好啦,以后多练习练习,加深理解 小白:嗯,我开始编程时,发现g2o的顶点和边的定义也非常复杂,光看十四讲里面,就有好几种不同的定义,完全懵圈状态...师兄,能否帮我捋捋思路啊 师兄:嗯,你说的没错,入门的时候确实感觉很乱,我最初也是花了些时间
从零开始一起学习SLAM | 理解图优化,一步步带你看懂g2o代码
首发于公众号:计算机视觉life 旗下知识星球「从零开始学习SLAM」 这可能是最清晰讲解g2o代码框架的文章 理解图优化,一步步带你看懂g2o框架 小白:师兄师兄,最近我在看SLAM的优化算法,有种方法叫"图优化",以前学习算法的时候还有一个优化方法叫"凸优化",这两个不是一个东西吧? 师兄:哈哈,这个问题有意思,虽然它们中文发音一样,但是意思差别大着呢!我们来看看英文表达吧,图优化的英文是 graph optimization 或者 graph-based op
SLAM领域牛人、牛实验室、牛研究成果梳理
点击公众号"计算机视觉life"关注,置顶星标更快接收消息! 本文阅读时间约5分钟 对于小白来说,初入一个领域时最应该了解的当然是这个领域的研究现状啦.只有知道这个领域大家现在正在干什么,才能知道自己应该做什么.关注领域内的大牛以及领域内比较著名的实验室,紧跟大牛的脚步,才能走在科研的最前沿.今天CV_life君就帮各位整理了一些现阶段国内外SLAM的著名实验室,大牛以及研究成果,还会附带大牛们的代表性论文,开源代码,以及常用的数据集网址,小白们如果喜欢的话记得分享给朋友哦~ 话不多说
从零开始一起学习SLAM | 点云平滑法线估计
点击公众号"计算机视觉life"关注,置顶星标更快接收消息! 本文编程练习框架及数据获取方法见文末获取方式 菜单栏点击"知识星球"查看「从零开始学习SLAM」一起学习交流 点云滤波后为什么还需要平滑? 小白:师兄,师兄,上次你说的点云滤波我学会啦,下一步怎么把点云变成网格啊? 师兄:滤波只是第一步,在网格化前我们还需要对滤波后的点云进行平滑(smoothing) 小白:不是已经滤波了吗?怎么还要平滑啊?滤波和平滑不一样吗? 师兄:确实不太一样.我们用RGB-D,激光
从零开始一起学习SLAM | 给点云加个滤网
对VSLAM和三维重建感兴趣的在计算机视觉life"公众号菜单栏回复"三维视觉"进交流群. 小白:师兄,上次你讲了点云拼接后,我回去费了不少时间研究,终于得到了和你给的参考结果差不多的点云,不过,这个点云"可远观而不可近看",放大了看就只有一个个稀疏的点了.究竟它能干什么呢? 师兄:这个问题嘛...基本就和SLAM的作用一样,定位和建图 小白:定位好理解,可是师兄说建图,这么稀疏的地图有什么用呢? 师兄:地图分很多种,稀疏的,稠密的,还有半稀疏的等,你输出
从零开始一起学习SLAM | 你好,点云
本文提纲 先热热身点云是啥你知道点云优缺点吗?点云库PCL:开发者的福音PCL安装指北炒鸡简单的PCL实践留个作业再走先热热身 小白:hi,师兄,好久不见师兄:师妹好,上周单应矩阵作业做了吗?小白:嗯,做了,这个单应矩阵真的挺有意思的.作业之外,我发现了一个新技能...师兄:什么技能?小白:我发现很多网上流传的图片都可以用上次我学过的单应矩阵实现,你看这张图,我第一次看到还以为是真的 现在知道这不就是我们上节课讲的单应矩阵的变换吗?果然我在网上找到了原图 现在我也会用OpenCV里的单应函数做这
从零开始一起学习SLAM | 神奇的单应矩阵
小白最近在看文献时总是碰到一个奇怪的词叫“homography matrix”,查看了翻译,一般都称作“单应矩阵”,更迷糊了.正所谓:“每个字都认识,连在一块却不认识”就是小白的内心独白.查了一下书上的推导,总感觉有种“硬凑”的意味,于是又找到了师兄... 神奇的单应矩阵小白:师兄~单应矩阵是什么鬼啊?我看书上的推导,每一步勉强能看懂,但还是不太理解其背后的物理意义,感觉不能转化为自己理解的方式啊师兄:哦,我第一次看的时候也是这种感觉 小白:而且这个名字好绕口啊,我完全没法和它的物理意义联系起来
从零开始一起学习SLAM | 不推公式,如何真正理解对极约束?
自从小白向师兄学习了李群李代数和相机成像模型的基本原理后,感觉书上的内容没那么难了,公式推导也能推得动了,感觉进步神速,不过最近小白在学习对极几何,貌似又遇到了麻烦... 小白:师兄,对极几何这块你觉得重要吗?师兄:当然重要啦,这个是多视角立体视觉的核心啊 小白:那师兄一定得帮帮我讲清楚啊,最近在看书上这部分内容,感觉很难理解呢!师兄:哪里不理解?书上公式推导的挺详细了都 小白:这么说吧,公式推导我也能大概看懂,但总觉得不知道为啥这么推导,这样推导的物理意义是什么?师兄:哦哦,明白啦,就是不能转
从零开始一起学习SLAM | 相机成像模型
上一篇文章<从零开始一起学习SLAM | 为啥需要李群与李代数?>以小白和师兄的对话展开,受到了很多读者的好评.本文继续采用对话的方式来学习一下相机成像模型,这个是SLAM中极其重要的内容,必须得掌握哦~ 小白:师兄,上次听你讲了李群李代数,有种“听君一席话胜读十年书”的赶脚~后来看书感觉容易理解多了呢!师兄:是吗?那太好啦,给你讲的过程也加深了我的理解呢小白:那师兄今天要不要继续加深理解一下相机成像模型 的部分呢?师兄:额..好啊(感觉被套路了,不过想想上次小白师妹请客吃了烧烤呢)小白:讲完
[SLAM] 01. "Simultaneous Localization and Mapping"
本篇带你认识SLAM,形成客观的认识和体系 一.通过行业招聘初步了解SLAM 发信人: leecty (Terry), 信区: ParttimeJobPost标 题: 创业公司招SLAM 算法工程师发信站: 水木社区 (Thu Jun 16 19:18:24 2016), 站内 我们是一家年轻的初创公司,核心团队来自清华大学和中科院.依托强大的视觉SLAM算法,我们深入投身到机器人,虚拟现实,增强现实等前沿产业. 招聘:视觉SLAM 算法工程师 (可以兼职/实习) 要求:1. 熟悉SVO,SFM
SLAM方向国内有哪些优秀公司?
计算机视觉life为读者整理了国内几十家涉及SLAM的优秀公司,涵盖自动驾驶.仓储机器人.服务机器人.无人机.AR.芯片相机等领域. 一 自动/辅助驾驶: 1.百度: 主要产品:自动驾驶软件 百度智能汽车开启未来之路.基于SD地图.ADAS地图.高精地图.人工智能.大数据, 向国内外车企提供自动驾驶系统解决方案和HMI人机交互平台:与车企.Tier1厂商.芯片厂商以及服务提供商等共同打造智慧汽车新生态自动驾驶软件服务自动驾驶软件服务,是面向汽车企业提供包括感知.自定位和决策在内的应用级自动驾驶辅
从零开始一起学习SLAM | 用四元数插值来对齐IMU和图像帧
视觉 Vs. IMU 小白:师兄,好久没见到你了啊,我最近在看IMU(Inertial Measurement Unit,惯性导航单元)相关的东西,正好有问题求助啊 师兄:又遇到啥问题啦? 小白:是这样的,现在VIO(Visual-Inertial Odometry,视觉惯性里程计)很火,我就想试试把IMU测量的信息和图像进行简单的融合,这样利用IMU测量的先验信息,可以给图像一个比较好的初值... 师兄:嗯嗯,这个思路没问题的啊,图像信息和 IMU 确实存在一定互补性,两者各有所长,取长补短.
综述 | SLAM回环检测方法
本文作者任旭倩,公众号:计算机视觉life成员,由于格式原因,公式显示可能出问题,建议阅读原文链接:综述 | SLAM回环检测方法 在视觉SLAM问题中,位姿的估计往往是一个递推的过程,即由上一帧位姿解算当前帧位姿,因此其中的误差便这样一帧一帧的传递下去,也就是我们所说的累积误差.一个消除误差有效的办法是进行回环检测.回环检测判断机器人是否回到了先前经过的位置,如果检测到回环,它会把信息传递给后端进行优化处理.回环是一个比后端更加紧凑.准确的约束,这一约束条件可以形成一个拓扑一致的轨迹地图.如果
SLAM、三维重建,语义相关数据集大全
作者朱尊杰,公众号:计算机视觉life,编辑成员 一 主要针对自动驾驶: 1.KITTI数据集: http://www.cvlibs.net/datasets/kitti/index.php(RGB+Lidar+GPS+IMU) KITTI数据集由德国卡尔斯鲁厄理工学院和丰田美国技术研究院联合创办,是目前国际上最大的自动驾驶场景下的计算机视觉算法评测数据集.该数据集用于评测立体图像 (stereo),光流 (optical flow),视觉里程计(visual odometry),3D物体检测
三维视觉、SLAM方向全球顶尖实验室汇总
本文作者 任旭倩,公众号:计算机视觉life,编辑成员 欧洲 英国伦敦大学帝国理工学院 Dyson 机器人实验室 http://www.imperial.ac.uk/dyson-robotics-lab 简介: 伦敦帝国理工学院戴森机器人实验室成立于2014年,由Andrew Davison.教授领导.是戴森公司和帝国理工学院领导机器人视觉小组Andrew Davison教授的合作实验室,Andrew Davison是视觉SLAM领域的先驱,戴森提供大量的资金和支持,以建立一个机器人专家团队,他
热门专题
window.onbeforeunload谷歌支持不
sql 里面dense_rank
javascript学习总结
sql连表查询唯一对应
mysql 使用force index坏处
python在线生成条形码
python 去除excel区域中重复数据
GD32F103不需要清中断吗
alpine 下使用bash脚本
containerPort service.port 区别
go 使用main包的类型
js 二进制为什么没有3
android button圆角
jQuery 乘法四舍五入
IPV6 unraid开
ndk char * 转string
mybatis读取blob字段链接关闭
html循环渲染内容
mybatis逆向生成还用写增删改查吗
Win7远程连接 资源管理器已停止工作