首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
spark 动态分配excutor
2024-10-31
spark动态资源(executor)分配
spark动态资源调整其实也就是说的executor数目支持动态增减,动态增减是根据spark应用的实际负载情况来决定. 开启动态资源调整需要(on yarn情况下) 1.将spark.dynamicAllocation.enabled设置为true.意思就是启动动态资源功能 2.将spark.shuffle.service.enabled设置为true. 在每个nodeManager上设置外部shuffle服务 2.1 将spark-<version>-yarn-shuffle.jar拷贝到
CDH中如何升级Spark
公司平时使用的CDH版本的hadoop生态,spark任务是基于yarn来管理的,而不是基于原生的spark master slave集群管理. 因此任务的大致启动模式是: 如果是Cluster模式: A节点启动Spark-submit,这个程序即为client,client连接Resource Manager Resource Manager指定一个Node Manager创建AppMaster,这个AppMaster就是Driver AppMaster向Resource Manager申请资
Spark on Yarn集群搭建
软件环境: linux系统: CentOS6.7 Hadoop版本: 2.6.5 zookeeper版本: 3.4.8 主机配置: 一共m1, m2, m3这五部机, 每部主机的用户名都为centos 192.168.179.201: m1 192.168.179.202: m2 192.168.179.203: m3 m1: Zookeeper, Namenode, DataNode, ResourceManager, NodeManager, Master, Worker m2: Zooke
Spark基础学习精髓——第一篇
Spark基础学习精髓 1 Spark与大数据 1.1 大数据基础 1.1.1 大数据特点 存储空间大 数据量大 计算量大 1.1.2 大数据开发通用步骤及其对应的技术 大数据采集->大数据预处理->大数据存储->大数据处理->大数据可视化 (1)大数据采集技术 分布式架构.多种采集技术混合使用 web数据采集:shell编程.爬虫工具.爬虫程序开发.HTTP协议.TCP/IP基本原理及Socket程序接口.编程语言.数据格式转换.分布式存储的命令和接口(HDFS.HBase等).
Flink(二)【架构原理,组件,提交流程】
目录 一.运行架构 1.架构 2.组件 二.核心概念 TaskManager . Slots Parallelism(并行度) Task .Subtask Operator Chains(任务链) ExecutionGraph(执行图)任务生成过程 提交流程 一.运行架构 1.架构 基于yarn模式 0) Flink任务提交后,Client向HDFS上传Flink的Jar包和配置 1) 向Yarn ResourceManager提交任务, 2) ResourceManager分配Containe
Spark Streaming揭秘 Day17 资源动态分配
Spark Streaming揭秘 Day17 资源动态分配 今天,让我们研究一下一个在Spark中非常重要的特性:资源动态分配. 为什么要动态分配?于Spark不断运行,对资源也有不小的消耗,在默认情况下,Spark采用的是粗粒度分配,那么低峰值时会产生大量的资源浪费. 比较有意思的是,在Spark Core和Spark Streaming中对于动态资源管理,采用了两种不同的思路. Spark core:动态资源控制 在SparkContext启动时,可以看到就有一个动态资源分配的属性控制,默
Spark源码分析 之 Driver和Excutor是怎么跑起来的?(2.2.0版本)
今天抽空回顾了一下Spark相关的源码,本来想要了解一下Block的管理机制,但是看着看着就回到了SparkContext的创建与使用.正好之前没有正式的整理过这部分的内容,这次就顺带着回顾一下. Spark作为目前最流行的大数据计算框架,已经发展了几个年头了.版本也从我刚接触的1.6升级到了2.2.1.由于目前工作使用的是2.2.0,所以这次的分析也就从2.2.0版本入手了. 涉及的内容主要有: Standalone模式中的Master与Worker client.driver.excutor
Spark Streaming资源动态分配和动态控制消费速率
本篇从二个方面讲解: 高级特性: 1.Spark Streaming资源动态分配 2.Spark Streaming动态控制消费速率 原理剖析,动态控制消费速率其后面存在一套理论,资源动态分配也有一套理论. 先讲理论,后面讨论. 为什么要动态资源分配和动态控制速率? Spark默认是先分配资源,然后计算:粗粒度的分配方式,资源提前分配好,有计算任务提前分配好资源: 不好的地方:从Spark Streaming角度讲有高峰值和低峰值,如果资源分配从高峰值.低峰值考虑都有大量资源的浪费. 其实当年S
spark分区数,task数目,core数,worker节点个数,excutor数量梳理
作者:王燚光链接:https://www.zhihu.com/question/33270495/answer/93424104来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 梳理一下Spark中关于并发度涉及的几个概念File,Block,Split,Task,Partition,RDD以及节点数.Executor数.core数目的关系. 输入可能以多个文件的形式存储在HDFS上,每个File都包含了很多块,称为Block.当Spark读取这些文件作为输入时,会
spark 资源动态分配
'spark.shuffle.service.enabled': 'true', 'spark.dynamicAllocation.enabled': 'false', , , , 'spark.sql.parquet.compression.codec': 'snappy', , "spark.speculation": 'true', 'spark.kryoserializer.buffer.max': '512m',
Spark提交应用程序之Spark-Submit分析
1.提交应用程序 在提交应用程序的时候,用到 spark-submit 脚本.我们来看下这个脚本: if [ -z "${SPARK_HOME}" ]; then export SPARK_HOME="$(cd "`dirname "$0"`"/..; pwd)" fi # disable randomized hash for string in Python 3.3+ export PYTHONHASHSEED= exec
Spark各个组件的概念,Driver进程
spark应用涉及的一些基本概念: 1.mater:主要是控制.管理和监督整个spark集群 2.client:客户端,将用应用程序提交,记录着要业务运行逻辑和master通讯. 3.sparkContext:spark应用程序的入口,负责调度各个运算资源,协调各个work node上的Executor.主要是一些记录信息,记录谁运行的,运行的情况如何等.这也是为什么编程的时候必须要创建一个sparkContext的原因了. 4.Driver Program:每个应用的主要管理者,每个应用的老大
spark源码分析以及优化
第一章.spark源码分析之RDD四种依赖关系 一.RDD四种依赖关系 RDD四种依赖关系,分别是 ShuffleDependency.PrunDependency.RangeDependency和OneToOneDependency四种依赖关系.如下图所示:org.apache.spark.Dependency有两个一级子类,分别是 ShuffleDependency 和 NarrowDependency.其中,NarrowDependency 是一个抽象类,它有三个实现类,分别是OneToO
1,Spark参数调优
Spark调优 目录 Spark调优 一.代码规范 1.1 避免创建重复RDD 1.2 尽量复用同一个RDD 1.3 多次使用的RDD要持久化 1.4 使用高性能算子 1.5 好习惯 二.参数调优 资源参数 1.1 --num-executors 100 1.2 --executor-memory 5g 1.3 --executor-cores 4 1.4 --driver-memory 内存参数 spark.storage.memoryFraction.spark.shuffle.memory
Spark 生态系统组件
摘要: 随着大数据技术的发展,实时流计算.机器学习.图计算等领域成为较热的研究方向,而Spark作为大数据处理的“利器”有着较为成熟的生态圈,能够一站式解决类似场景的问题.那你知道Spark生态系统有哪些组件吗?下面让我们跟着本文一同了解下这些不可或缺的组件.本文选自<图解Spark:核心技术与案例实战> Spark 生态系统以Spark Core 为核心,能够读取传统文件(如文本文件).HDFS.Amazon S3.Alluxio 和NoSQL 等数据源,利用Standalone.YARN
Spark——SparkContext简单分析
本篇文章就要根据源码分析SparkContext所做的一些事情,用过Spark的开发者都知道SparkContext是编写Spark程序用到的第一个类,足以说明SparkContext的重要性:这里先摘抄SparkContext源码注释来 简单介绍介绍SparkContext,注释的第一句话就是说SparkContext为Spark的主要入口点,简明扼要,如把Spark集群当作服务端那Spark Driver就是客户端,SparkContext则是客户端的核心:如注释所说 SparkContex
Spark 官方文档(4)——Configuration配置
Spark可以通过三种方式配置系统: 通过SparkConf对象, 或者Java系统属性配置Spark的应用参数 通过每个节点上的conf/spark-env.sh脚本为每台机器配置环境变量 通过log4j.properties配置日志属性 Spark属性 Spark属性可以为每个应用分别进行配置,这些属性可以直接通过SparkConf设定,也可以通过set方法设定相关属性. 下面展示了在本地机使用两个线程并发执行的配置代码: val conf = new SparkConf() .setMas
Spark 宏观架构&执行步骤
Spark 使用主从架构,有一个中心协调器和许多分布式worker. 中心协调器被称为driver.Driver 和被称为executor 的大量分布式worker 通信 Driver 运行在它自己的Java 进程,而每个executor 是单独的Java 进程.Driver 和它的所有executor 一起被称为Spark 应用. Spark 应用运行在一组使用被称为集群管理器的外部服务的机器上.注意,Spark 打包了一个内置的集群管理器,叫做Standalong 集群管理器.Spark 也
Spark Streaming资源动态申请和动态控制消费速率剖析
本期内容 : Spark Streaming资源动态分配 Spark Streaming动态控制消费速率 为什么需要动态处理 : Spark 属于粗粒度资源分配,也就是在默认情况下是先分配好资源然后再进行计算,粗粒度有个好处,因为资源是提前给你分配好,当有计算任务的时候直接使用就可以了, 粗粒度不好的方面就是从Spark Streaming角度讲有高峰值.低峰值,在高与低峰值时候需要的资源是不一样的,如果资源分配按照高峰值考虑的话,在低峰值就是对资源的浪费, 随着Spark Streaming
Spark on YARN两种运行模式介绍
本文出自:Spark on YARN两种运行模式介绍http://www.aboutyun.com/thread-12294-1-1.html(出处: about云开发) 问题导读 1.Spark在YARN中有几种模式? 2.Yarn Cluster模式,Driver程序在YARN中运行,应用的运行结果在什么地方可以查看? 3.由client向ResourceManager提交请求,并上传jar到HDFS上包含哪些步骤? 4.传递给app的参数应该通过什么来指定? 5.什么模式下最后将结果输
通过案例对 spark streaming 透彻理解三板斧之二:spark streaming运行机制
本期内容: 1. Spark Streaming架构 2. Spark Streaming运行机制 Spark大数据分析框架的核心部件: spark Core.spark Streaming流计算.GraphX图计算.MLlib机器学习.Spark SQL.Tachyon文件系统.SparkR计算引擎等主要部件. Spark Streaming 其实是构建在spark core之上的一个应用程序,要构建一个强大的Spark应用程序 ,spark Streaming是一个值得借鉴的参考,spa
热门专题
.和source与bash或sh执行脚本的区别
cmd查看iis配置
如何在R里做坐标的回归图
mysqlsql组内排序 取第一条
mongotemplate查询数据慢
openwrt虚拟机安装
haproxy和lvs来实现mysql数据库集群之间的负载
fitnesse前端改造
对应的钉钉组织corpId
storyboard页面很多时
oracle utf8 gbk怎么选择
mapbox 支持pgis坐标系
swt 下拉框能多选吗
router多层嵌套出现页面空白
activex控件 .net
上传文件jackson报错
tensorflow gpu cpu 服务器
python win32鼠标移动到指定位置
adb弹出授权提示框指令
swiper不能自动切换图片