首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
verilog实现cpu
2024-08-27
verilog简易实现CPU的Cache设计
verilog简易实现CPU的Cache设计 该文是基于博主之前一篇博客http://www.cnblogs.com/wsine/p/4661147.html所增加的Cache,相同的内容就不重复写了,可点击链接查看之前的博客. Cache结构 采用的是2-way,循环5遍的测试方式,和书本上一致,4个set Cache设计 首先在PCPU模块里面增加寄存器 在流水线MEM那一阶段如果是STROE或者LOAD指令更新cache 采取的替换策略是FIFO策略,在cache上面增加了一个位U 整个c
Verilog MIPS32 CPU(八)-- 控制器
Verilog MIPS32 CPU(一)-- PC寄存器 Verilog MIPS32 CPU(二)-- Regfiles Verilog MIPS32 CPU(三)-- ALU Verilog MIPS32 CPU(四)-- RAM Verilog MIPS32 CPU(五)-- CP0 Verilog MIPS32 CPU(六)-- MDU Verilog MIPS32 CPU(七)-- DIV.DIVU Verilog MIPS32 CPU(八)-- 控制器 module CtrlUni
Verilog MIPS32 CPU(六)-- MDU
Verilog MIPS32 CPU(一)-- PC寄存器 Verilog MIPS32 CPU(二)-- Regfiles Verilog MIPS32 CPU(三)-- ALU Verilog MIPS32 CPU(四)-- RAM Verilog MIPS32 CPU(五)-- CP0 Verilog MIPS32 CPU(六)-- MDU Verilog MIPS32 CPU(七)-- DIV.DIVU Verilog MIPS32 CPU(八)-- 控制器 module MDU( in
Verilog MIPS32 CPU(七)-- DIV、DIVU
Verilog MIPS32 CPU(一)-- PC寄存器 Verilog MIPS32 CPU(二)-- Regfiles Verilog MIPS32 CPU(三)-- ALU Verilog MIPS32 CPU(四)-- RAM Verilog MIPS32 CPU(五)-- CP0 Verilog MIPS32 CPU(六)-- MDU Verilog MIPS32 CPU(七)-- DIV.DIVU Verilog MIPS32 CPU(八)-- 控制器 module DIVU( :
Verilog MIPS32 CPU(五)-- CP0
Verilog MIPS32 CPU(一)-- PC寄存器 Verilog MIPS32 CPU(二)-- Regfiles Verilog MIPS32 CPU(三)-- ALU Verilog MIPS32 CPU(四)-- RAM Verilog MIPS32 CPU(五)-- CP0 Verilog MIPS32 CPU(六)-- MDU Verilog MIPS32 CPU(七)-- DIV.DIVU Verilog MIPS32 CPU(八)-- 控制器 module CP0( in
Verilog MIPS32 CPU(四)-- RAM
Verilog MIPS32 CPU(一)-- PC寄存器 Verilog MIPS32 CPU(二)-- Regfiles Verilog MIPS32 CPU(三)-- ALU Verilog MIPS32 CPU(四)-- RAM Verilog MIPS32 CPU(五)-- CP0 Verilog MIPS32 CPU(六)-- MDU Verilog MIPS32 CPU(七)-- DIV.DIVU Verilog MIPS32 CPU(八)-- 控制器 module ram( in
Verilog MIPS32 CPU(三)-- ALU
Verilog MIPS32 CPU(一)-- PC寄存器 Verilog MIPS32 CPU(二)-- Regfiles Verilog MIPS32 CPU(三)-- ALU Verilog MIPS32 CPU(四)-- RAM Verilog MIPS32 CPU(五)-- CP0 Verilog MIPS32 CPU(六)-- MDU Verilog MIPS32 CPU(七)-- DIV.DIVU Verilog MIPS32 CPU(八)-- 控制器 module alu( :]
Verilog MIPS32 CPU(二)-- Regfiles
Verilog MIPS32 CPU(一)-- PC寄存器 Verilog MIPS32 CPU(二)-- Regfiles Verilog MIPS32 CPU(三)-- ALU Verilog MIPS32 CPU(四)-- RAM Verilog MIPS32 CPU(五)-- CP0 Verilog MIPS32 CPU(六)-- MDU Verilog MIPS32 CPU(七)-- DIV.DIVU Verilog MIPS32 CPU(八)-- 控制器 module RegFile
Verilog MIPS32 CPU(一)-- PC寄存器
Verilog MIPS32 CPU(一)-- PC寄存器 Verilog MIPS32 CPU(二)-- Regfiles Verilog MIPS32 CPU(三)-- ALU Verilog MIPS32 CPU(四)-- RAM Verilog MIPS32 CPU(五)-- CP0 Verilog MIPS32 CPU(六)-- MDU Verilog MIPS32 CPU(七)-- DIV.DIVU Verilog MIPS32 CPU(八)-- 控制器 module pcreg(
Verilog MIPS32 CPU(九)-- 顶层文件
`timescale 1ns / 1ps ////////////////////////////////////////////////////////////////////////////////// // Company: // Engineer: // // Create Date: 04/28/2017 07:27:12 PM // Design Name: // Module Name: Interfaces // Project Name: // Target Devices:
P4-verilog实现mips单周期CPU
最近对学习的掌控可能出现了问题,左支右绌,p2挂了,p2.p3.p4.p5每周在计组花的连续时间少了很多,学习到的东西也少了很多,流水线都还没真正开始写,和别人比落后了一大截,随笔自然就荒废了,我得尽快调整状态,下决心只要学不死,就往死里学,尽快迎头赶上鸭!! 由于p4断断续续做的,现在临考前来总结一下p4,顺便恢复一下记忆,对Verilog命名规范.p4设计CPU技巧.实现细节等等进行初步总结,如有不对烦请指正. 一.Verilog设计单周期CPU流程 由于p3和理论部分我们已经掌握了单周期C
verilog实现16位五级流水线的CPU带Hazard冲突处理
verilog实现16位五级流水线的CPU带Hazard冲突处理 该文是基于博主之前一篇博客http://www.cnblogs.com/wsine/p/4292869.html所增加的Hazard处理,相同的内容就不重复写了,可点击链接查看之前的博客. CPU设计 该处理器的五级流水线设计: 类似于MIPS体系架构依据流水线结构设计.只要CPU从缓存中获取数据,那么执行每条MIPS指令就被分成五个流水阶段,并且每个阶段占用固定的时间,通常是只耗费一个处理器时钟周期. 处理器在设计时,将处理器的
verilog实现的16位CPU单周期设计
verilog实现的16位CPU单周期设计 这个工程完成了16位CPU的单周期设计,模块化设计,包含对于关键指令的仿真与设计,有包含必要的分析说明. 单周期CPU结构图 单周期CPU设计真值表与结构图 该CPU用到的指令集,16位8个通用寄存器 设计思路 Instruction Memory: 输入8位的PC指令,输出对应内存的16位指令 Control Unit 输入16位的指令,根据真值表,输出对应结果 Register File 输入三个地址和写入内容,写入信号,输出两个地址对应的内容 由
自己动手写CPU(基于FPGA与Verilog)
大三上学期开展了数字系统设计的课程,下学期便要求自己写一个单周期CPU和一个多周期CPU,既然要学,就记录一下学习的过程. CPU--中央处理器,顾名思义,是计算机中最重要的一部分,功能就是周而复始地执行指令.其实开始做这部分之前,想到CPU就觉得很麻烦,毕竟时计算机内部最重要的东西,但其实刨开来细看,也就慢慢地接受了,当然我现在也不能说是了如指掌,说简单,毕竟自己还处于学习阶段,甚至可能还没有入门.慢慢来吧,先从简单的开始,一步一个脚印,总能写成的.今天先写在具体写代码之前的思路和设计方案.
verilog实现的16位CPU设计
verilog实现的16位CPU设计 整体电路图 CPU状态图 idle代表没有工作,exec代表在工作 实验设计思路 五级流水线,增加硬件消耗换取时间的做法. 具体每一部分写什么将由代码部分指明. 完整代码 headfile.v 头文件定义.包含整个工程中的特殊变量定义.后文中只用到gr0到gr3部分,因此该部分没写gr4到gr7,有需要的同学请自行加上. `ifndef HEADFILE_H_ //State for CPU `define idle 1'b0 `define exec 1'
使用Verilog搭建一个单周期CPU
使用Verilog搭建一个单周期CPU 搭建篇 总体结构 其实跟使用logisim搭建CPU基本一致,甚至更简单,因为完全可以照着logisim的电路图来写,各个模块和模块间的连接在logisim中非常清楚.唯一改变了的只有GRF和DM要多一个input PC端口,用来display的时候输出PC值:IFU同理多了一个output PC,用来把PC的值传给GRF和DM.其他的模块我都是直接对着logisim原封不动地用Verilog重新实现了一遍.目前支持指令集{addu.subu.ori.lw
流水线cpu —Verilog HDL
一.准备工作 先看看书(<计算机原理与设计 Verilog HDL版>),搞懂一点原理.然后照着书上的代码写一写(用8.4的就可以了,不用8.6的). 注意mux2x32,mux4,cla32等可以用单周期的mux,alu. (cla32就是个加法器,) 然后dffe32在书上前几章也有. pipeimem即为im指令存储器,可以套用单周期的IM. pipemem是数据存储器,可以套用单周期的dm regfile 可以套用单周期的RF. alu可以完全套用单周期的alu.pipecu中的alu
自己动手写CPU——寄存器堆、数据存储器(基于FPGA与Verilog)
上一篇写的是基本的设计方案,由于考研复习很忙,不知道下一次什么时候才能打开博客,今天就再写一篇.写一写CPU中涉及到RAM的部件,如寄存器堆.数据存储器等. 大家应该在大一刚接触到计算机的时候就知道ROM.RAM了吧.但也记不得那些繁杂的名称,只知道ROM是只读存储器,RAM是可读写存储器.其实知道这些也就够了.CPU内寄存器堆.数据存储器等部件都是可读出可写入的部件,所以全部属于RAM,其实在ISE中是可以直接进行调用IP核来完成这些操作的,但今天暂且不谈IP核,或许后期会对IP核模块进行详细
【CPU微架构设计】利用Verilog设计基于饱和计数器和BTB的分支预测器
在基于流水线(pipeline)的微处理器中,分支预测单元(Branch Predictor Unit)是一个重要的功能部件,它负责收集和分析分支/跳转指令的执行结果,当处理后续分支/跳转指令时,BPU将根据已有的统计结果和当前分支跳转指令的参数,预测其执行结果,进而为流水线取指提供决策依据,从而提高流水线效率. 本文将针对分支预测单元的设计思路进行讨论.在进行设计前,首先需要说明使用分支预测技术的原因及其现实意义. 在流水线处理分支跳转指令时,目标地址往往需要推迟到指令的执行阶段才能运算得出,
Verilog单周期CPU(未完待续)
单周期CPU:指令周期=CPU周期 Top模块作为数据通路 运算器中有ALU,通路寄存器(R1.R2.R3.R4),数据缓冲寄存器(鉴于书上的运算器只有R0)........... 此为ALU和通用寄存器的模块,(注意:当各个模块进行仿真时应该将其模块set as top,当进行数据通路时则如图,此图缺少数据输入缓冲寄存器) 部分代码如下 对不通发模块进行仿真后,对top仿真 部分代码
热门专题
ssh 22端口拒绝
modelviewset 实现批量数据创建
2019 ccpc 网络赛 数论 lcm
html li标签里怎么添加图片
elementui的 Notification添加按钮
dbgrid 数据小数点
nodejs项目获取请求头中的user agent,进行适配
rsync源数据被删除则客户端数据不删除
arduino 变量运算
mysql数据库sql执行慢的排查和解决思路
elasticsearch bulk pool配置
Python3.9安装pyspider
nginx 配置proxy 携带参数
final static和static final有什么区别
nmap 全端口扫描参数
字母y的英语读音规则
golang waitgroup 坑
ubuntu 阿里源
Mac 终端如何安装
openssl 生成证书 指定用户名和组织