【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 4_Linear Regression with Multiple Variables 多变量线性回归
Lecture 4 Linear Regression with Multiple Variables 多变量线性回归
4.1 多维特征 Multiple Features
4.2 多变量梯度下降 Gradient Descent for Multiple Variables
4.3 梯度下降法实践 1-特征缩放 Gradient Descent in Practice I - Feature Scaling
4.4 梯度下降法实践 2-学习率 Gradient Descent in Practice II - Learning Rate
4.5 特征和多项式回归 Features and Polynomial Regression
4.6 正规方程 Normal Equation
4.7 正规方程及不可逆性 Normal Equation Noninvertibility
4.1 多维特征 Multiple Features
参考视频: 4 - 1 - Multiple Features (8 min).mkv
Multivariate linear regression 多维线性回归
之前讨论单变量回归模型。现在讨论多变量模型,模型中的特征为(x1,x2,...,xn)。

引入新的注释:
x(i)j = value of feature j in the ith training example 特征矩阵中第 i 行的第 j 个特征,也就是第 i 个训练实例的第 j 个特征。
x(i) = the input (features) of the ith training example 第 i 个训练实例,是特征矩阵中的第 i 行,是一个向量(vector)。
m = the number of training examples 训练实例的个数
n = the number of features 特征的数量
支持多变量的假设 h 表示为:

这个公式中有 n+1 个参数和 n 个变量,为了使得公式能够简化一些,引入 x0=1,则公式转化为:

此时模型中的参数是一个 n+1 维的向量,任何一个训练实例也都是 n+1 维的向量,特征矩阵 X 的维度是 m * (n+1)。
公式可以简化为:

4.2 多变量梯度下降 Gradient Descent for Multiple Variables
参考视频: 4 - 2 - Gradient Descent for Multiple Variables (5 min).mkv
在具有多变量的线性回归中,定义代价函数 J(Θ) 如下:


多变量线性回归模型如下。为了简化,我们加入X0 = 1,参数Θ为一个n+1维向量vector。算法会同步更新每一个Θj (j = 0到n)

对比 单变量梯度下降(左边) 和 多变量梯度下降(右边)。因为
是我们引入的,其值为1,所以多变量梯度下降前两项 Θ0 和Θ1 和单变量梯度下降是一样的。

Python 代码:
def computeCost(X, y, theta):
inner = np.power(((X * theta.T) - y), 2)
return np.sum(inner) / (2 * len(X))
4.3 梯度下降法实践 1-特征缩放 Gradient Descent in Practice I - Feature Scaling
参考视频: 4 - 3 - Gradient Descent in Practice I - Feature Scaling (9 min).mkv
多维特征问题中,帮助梯度下降算法更快地收敛,特征需要具有相近的尺度(similar scale),这就需要我们进行 特征缩放Feature Scaling。
假设两个特征,房屋尺寸的值为 0-2000 平方英尺,而房间数量的值为 0-5,对应的代价函数等高线图会显得很扁(skewed elliptical shape),梯度下降算法需要非常多
次的迭代才能收敛(左图)。
把房屋尺寸除以2000,房屋数量除以5,尝试将所有特征的尺度都尽量缩放到 -1 到 1 之间,得到了近乎圆形的等高线(右图)。

尺度也不是必须要 -1 到1,但是范围不能很大,也不能很小,例如:

最简单的方法是均值归一化 Mean normalization,令:

其中 μi 是第 i 维所有取值的平均值。si 是第 i 维取值的范围 range (或标准差 standard deviation)

4.4 梯度下降法实践 2-学习率 Gradient Descent in Practice II - Learning Rate
参考视频: 4 - 4 - Gradient Descent in Practice II - Learning Rate (9 min).mkv
为保证梯度下降算法正确运行,可以绘制 迭代次数 iteration numbers 和 代价函数的图表,观测算法在何时趋于收敛(左边)。
还有一些自动测试是否收敛的方法 automatic convergence test,例如使用阈值 ε(右边)。因为阈值的大小很难选取,还是左侧的图表比较好。

随着迭代次数增加,代价函数应该呈下降趋势。如果上升或者频繁升降,说明 α 取得太大,可能导致不能收敛。如果 α 取值太小,算法会运行的很慢,但还是下降的,通常会迭代很多次后收敛。

学习率可以尝试如下值:

4.5 特征和多项式回归 Features and Polynomial Regression
参考视频: 4 - 5 - Features and Polynomial Regression (8 min).mkv
4.5.1 创造新的特征
不一定非要用已有特征,可以创造新的特征,例如:面积 = 长 * 宽。这时二次函数变成了单变量函数。

4.5.2 多项式回归 Polynomial Regression
二次方程模型:

三次方程模型:

因为实际生活中,随着房屋面积上升、房价不可能减小,而二次曲线会先上升后下降。选择三次方模型,引入另外的变量替换高次幂,将其转换为线性回归模型。

为了和曲线拟合的更好,还可以使用 平方根 square root

4.6 正规方程 Normal Equation
参考视频: 4 - 6 - Normal Equation (16 min).mkv
4.6.1 正规方程 Normal Equation
正规方程的思想:假设代价函数 J(Θ) 的偏导数等于0,求解方程,得到使代价函数 J(Θ) 最小的参数 Θ。即求曲线的最低点(切线斜率为0)。
最简单的情况,只有一维,代价函数是二次曲线:

如果有n个特征,则 Θ 为n+1维。针对代价函数 J(Θ) 的每一项 J(Θj) ,设其偏导数为0。通过数学方法求解方程,得到使代价函数 J(Θj) 最小的 Θj。

4.6.2 正规方程的解
假设训练集特征矩阵为 X(包含x0 = 1),结果为向量y,则解Θ可以通过公式求出:

例子,四个数据:

解 Θ 为:

正规方程方法中,不用进行特征缩放 Feature Scaling。

在Octave 中, 求解的代码为:
1 pinv( X' * X ) * X' * y
4.6.3 梯度下降和正规方程的比较
1、梯度下降需要选择学习率 α,迭代很多步,正规方程只需要一步。
2、正规方程依赖于矩阵计算。由于计算逆矩阵的时间复杂度是 O(n3),当n比较大时,计算过程会特别慢


总结:
1、特征变量的数目 n 不大的时候,推荐使用正规方程。
2、n 比较大的时候(例如10000),考虑梯度下降。
3、某些算法(例如分类算法中的逻辑回归)不能使用正规方程法,只能使用梯度下降。
正规方程的python实现:
import numpy as np
def normalEqn(X, y):
theta = np.linalg.inv(X.T@X)@X.T@y #X.T@X 等价于 X.T.dot(X)
return theta
4.7 正规方程及不可逆性 Normal Equation Noninvertibility
参考视频: 4 - 7 - Normal Equation Noninvertibility (Optional) (6 min).mkv
当矩阵XTX不可逆怎么办? 不可逆的问题很少发生,即使发生,使用pinv()也能正常算出结果。
pinv() pseudo-inverse伪逆 即使 singular degenerate 也能算出来逆矩阵
inv() inverse逆 引入了先进的数值计算的概念
两种情况可能导致不可逆:
1、有冗余特征 redundant features,即特征值线性相关(例如 x1 = 常数 * x2)
解决:删除冗余特征
2、特征维数 n ≤ 数据规模 m (例如10个样本适应100+1个参数)
解决:删除特征,或者使用线性代数中的正则化 regularization方法

相关术语
skewed elliptical shape 偏斜椭圆形
poorly scaled feature 范围不好
mean normalization 均值归一化
feature scaling 特征缩放
iteration numbers 迭代步数
polynomial regression 多项式回归
quadratic function 二次函数
cubic function 三次函数
square root 平方根
regulazation 正规化
redundant features 冗余特征
noninvertibility 不可逆
pseudo-inverse 伪逆
【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 4_Linear Regression with Multiple Variables 多变量线性回归的更多相关文章
- 【原】Coursera—Andrew Ng机器学习—Week 2 习题—Linear Regression with Multiple Variables 多变量线性回归
Gradient Descent for Multiple Variables [1]多变量线性模型 代价函数 Answer:AB [2]Feature Scaling 特征缩放 Answer:D ...
- 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 2_Linear regression with one variable 单变量线性回归
Lecture2 Linear regression with one variable 单变量线性回归 2.1 模型表示 Model Representation 2.1.1 线性回归 Li ...
- 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 6_Logistic Regression 逻辑回归
Lecture6 Logistic Regression 逻辑回归 6.1 分类问题 Classification6.2 假设表示 Hypothesis Representation6.3 决策边界 ...
- 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 15—Anomaly Detection异常检测
Lecture 15 Anomaly Detection 异常检测 15.1 异常检测问题的动机 Problem Motivation 异常检测(Anomaly detection)问题是机器学习算法 ...
- 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 16—Recommender Systems 推荐系统
Lecture 16 Recommender Systems 推荐系统 16.1 问题形式化 Problem Formulation 在机器学习领域,对于一些问题存在一些算法, 能试图自动地替你学习到 ...
- 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 14—Dimensionality Reduction 降维
Lecture 14 Dimensionality Reduction 降维 14.1 降维的动机一:数据压缩 Data Compression 现在讨论第二种无监督学习问题:降维. 降维的一个作用是 ...
- 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 13—Clustering 聚类
Lecture 13 聚类 Clustering 13.1 无监督学习简介 Unsupervised Learning Introduction 现在开始学习第一个无监督学习算法:聚类.我们的数据没 ...
- 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 12—Support Vector Machines 支持向量机
Lecture 12 支持向量机 Support Vector Machines 12.1 优化目标 Optimization Objective 支持向量机(Support Vector Machi ...
- 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 11—Machine Learning System Design 机器学习系统设计
Lecture 11—Machine Learning System Design 11.1 垃圾邮件分类 本章中用一个实际例子: 垃圾邮件Spam的分类 来描述机器学习系统设计方法.首先来看两封邮件 ...
随机推荐
- NAVagationController
UINavigationController为导航控制器,在iOS里经常用到. 1.UINavigationController的结构组成 UINavigationController有Navigat ...
- 再读《Java编程思想 》
前段时间在豆瓣上无意间看到一个帖子"我为什么把thinking in java 读了10遍",是11年的帖子,下面评论至今,各种声音都有,不过大多数还是佩服和支持的.我个人来讲也是 ...
- eclipse 智能提示js和jquery等前端插件
使用Eclipse写Jquery和Javascript代码的时候,是没有智能提示的.我们可以使用一个插件来解决这个问题. 安装完成后,Eclipse会自动重启.重启之后,我们在项目上右键, 根据自 ...
- LINUX 修改本机yum源为163镜像源
进入yum源配置目录 [root@localhost yum.repos.d]# cd /etc/yum.repos.d/ 备份系统yum源,用于日后恢复. [root@localhost yum.r ...
- PHP 去掉文文文件中的回车与空格
文本文件fff.txt中去除回车与空格: $aa = file_get_contents('./fff.txt'); $bb = str_replace(array("\r\n", ...
- bzoj 5369 最大前缀和
Written with StackEdit. Description 小\(C\)是一个算法竞赛爱好者,有一天小\(C\)遇到了一个非常难的问题:求一个序列的最大子段和. 但是小\(C\)并不会做这 ...
- 剑指offer-第六章面试中的各项能力(n个骰子的点数)
题目:把n个骰子扔到地上,骰子之和为S,输入n,打印s所有可能的值出现的概率. 思路:由于骰子的点数为1~6,因此n个骰子之和的大小为n~6n之间.故可以定义一个数组来存放这6n-n+1个数出现的次数 ...
- sqlalchemy的缓存和刷新
其实只是第一次查询了数据库,其他的时候都使用的是缓存,所以有时候,因为这个特性会出错,所以需要刷新对象或者使对象过期 参考链接:http://www.cnblogs.com/fengyc/p/5369 ...
- 使用PHP判断是否为微信、支付宝等移动设备访问代码
在开发过程中经常遇到根据不同的设备显示不同的数据或者在页面样式上做不同的布局,另外在做支付接口的时候也可能会判断当前是什么设备访问,例如判断如果是微信内置浏览器访问则只启用微信支付功能,如果是支付宝内 ...
- Oracle Database 12.2新特性详解
在2015年旧金山的Oracle OpenWorld大会上,Oracle发布了Database 12.2的Beta版本,虽然Beta版本只对部分用户开放,但是大会上已经公布了12.2的很多重要的新特性 ...