膜拜cdc……他的推导详细到我这种蒟蒻都能看得懂!

膜拜的传送门

所以我附一下代码就好了。

#include<bits/stdc++.h>
#define N 10000005
#define yql 20101009
using namespace std;
typedef long long ll;
int mu[N],prime[N],cnt,s[N],vis[N];
ll n,m,ans,maxn;
inline ll sum(ll x,ll y){
return ((x*(x+)/)%yql)*((y*(y+)/)%yql)%yql;
}
inline void calcmu(){
memset(vis,,sizeof(vis));cnt=;mu[]=;
for(int i=;i<=maxn;i++){
if(vis[i]){prime[++cnt]=i;mu[i]=-;}
for(int j=;j<=cnt;j++){
int t=i*prime[j];if(t>maxn)break;
vis[t]=;
if(i%prime[j]==){mu[t]=;break;}
mu[t]=-mu[i];
}
}
for(ll i=;i<=maxn;i++)s[i]=(s[i-]+(i*i*mu[i])%yql)%yql;
}
inline ll F(ll x,ll y){
ll ans=;ll n=min(x,y);
for(ll i=,j=;i<=n;i=j+){
j=min(x/(x/i),y/(y/i));
ans=(ans+(s[j]-s[i-])*sum(x/i,y/i)%yql)%yql;
}
return ans;
}
int main(){
cin>>n>>m;maxn=min(n,m);
calcmu();
for(ll i=,j=;i<=maxn;i=j+){
j=min(n/(n/i),m/(m/i));
ans=(ans+(i+j)*(j-i+)/%yql*F(n/i,m/i)%yql)%yql;
}
printf("%lld\n",(ans+yql)%yql);
}

【反演复习计划】【bzoj2154】Crash的数字表格的更多相关文章

  1. BZOJ2154 Crash的数字表格 【莫比乌斯反演】

    BZOJ2154 Crash的数字表格 Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b) ...

  2. Bzoj2154 Crash的数字表格 乘法逆元+莫比乌斯反演(TLE)

    题意:求sigma{lcm(i,j)},1<=i<=n,1<=j<=m 不妨令n<=m 首先把lcm(i,j)转成i*j/gcd(i,j) 正解不会...总之最后化出来的 ...

  3. 【莫比乌斯反演】BZOJ2154 Crash的数字表格

    Description 求sigma lcm(x,y),x<=n,y<=m.n,m<=1e7. Solution lcm没有什么直接做的好方法,用lcm=x*y/gcd转成gcd来做 ...

  4. 莫比乌斯反演套路三、四--BZOJ2154: Crash的数字表格 && BZOJ2693: jzptab

    t<=1e4个询问每次问n,m<=1e7,$\sum_{1\leqslant x \leqslant n,1 \leqslant y\leqslant m}lcm(x,y)$. 首先题目要 ...

  5. bzoj千题计划253:bzoj2154: Crash的数字表格

    http://www.lydsy.com/JudgeOnline/problem.php?id=2154 #include<cstdio> #include<algorithm> ...

  6. bzoj2154: Crash的数字表格 莫比乌斯反演

    题意:求\(\sum_{i=1}^n \sum_{j=1}^m\frac{i*j}{gcd(i,j)}\) 题解:\(ans=\sum_{i=1}^n\sum_{j=1}^m \frac{i*j}{g ...

  7. [bzoj2154]Crash的数字表格(mobius反演)

    题意:$\sum\limits_{i = 1}^n {\sum\limits_{j = 1}^m {lcm(i,j)} } $ 解题关键: $\sum\limits_{i = 1}^n {\sum\l ...

  8. BZOJ2154: Crash的数字表格 & BZOJ2693: jzptab

    [传送门:BZOJ2154&BZOJ2693] 简要题意: 给出n,m,求$\sum_{i=1}^{n}\sum_{j=1}^{m}LCM(i,j)$ 题解: 莫比乌斯反演(因为BZOJ269 ...

  9. BZOJ2154: Crash的数字表格

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2154 题意&&题解:http://www.cnblogs.com/jiangl ...

  10. 【BZOJ2154】Crash的数字表格(莫比乌斯反演)

    [BZOJ2154]Crash的数字表格(莫比乌斯反演) 题面 BZOJ 简化题意: 给定\(n,m\) 求\[\sum_{i=1}^n\sum_{j=1}^mlcm(i,j)\] 题解 以下的一切都 ...

随机推荐

  1. 用tensorflow实现自然语言处理——基于循环神经网络的神经语言模型

    自然语言处理和图像处理不同,作为人类抽象出来的高级表达形式,它和图像.声音不同,图像和声音十分直觉,比如图像的像素的颜色表达可以直接量化成数字输入到神经网络中,当然如果是经过压缩的格式jpeg等必须还 ...

  2. python中字典的循环遍历的两种方式

    开发中经常会用到对于字典.列表等数据的循环遍历,但是python中对于字典的遍历对于很多初学者来讲非常陌生,今天就来讲一下python中字典的循环遍历的两种方式. 注意: python2和python ...

  3. 解析LINQ To Object

    1.解剖Linq to object   此文转载自http://www.cnblogs.com/irenebbkiss/p/4155480.html LINQ想必大家都不陌生了,它 的出现使得我们的 ...

  4. CFS 调度器

    CFS调度器的原理明白了但是有个地方,搜遍了整个网络也没找到一个合理的解释: if (delta > ideal_runtime) resched_task(rq_of(cfs_rq)-> ...

  5. RegExp & bug

    RegExp & bug translated bug // OK && tranlate `/` let new_obj_reg = new RegExp(`^(([^< ...

  6. 【bzoj3262】陌上花开 CDQ分治+树状数组

    题目描述 有n朵花,每朵花有三个属性:花形(s).颜色(c).气味(m),又三个整数表示.现要对每朵花评级,一朵花的级别是它拥有的美丽能超过的花的数量.定义一朵花A比另一朵花B要美丽,当且仅当Sa&g ...

  7. C#怎么调用方法

    using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace Exep ...

  8. [bzoj5321] [Jxoi2017]加法

    Description 可怜有一个长度为 n 的正整数序列 A,但是她觉得 A 中的数字太小了,这让她很不开心. 于是她选择了 m 个区间 [li, ri] 和两个正整数 a, k.她打算从这 m 个 ...

  9. vector 搜索

    http://classfoo.com/ccby/article/cIBahI #include <iostream> #include <algorithm> #includ ...

  10. python3处理pdf

    https://github.com/1049451037/pdfminer3k 使用pdfminer3k,如果是python2的话直接用pdfminer就行了. python setup.py in ...