习题地址 https://www.acwing.com/problem/content/description/24/

题目描述

给你一根长度为 nn 绳子,请把绳子剪成 mm 段(mm、nn 都是整数,2≤n≤582≤n≤58 并且 m≥2m≥2)。

每段的绳子的长度记为k[0]、k[1]、……、k[m]。k[0]k[1] … k[m] 可能的最大乘积是多少?

例如当绳子的长度是8时,我们把它剪成长度分别为2、3、3的三段,此时得到最大的乘积18。

样例

输入:

输出:

一道数论题目 就是整数可以拆分成几个整数 得到乘积最大

但是也可以使用动态规划做

dp[i]表示 长度为i的绳子可以拆分得到的最大结果

由于绳子必须拆分 i至少等于2

而长度i的各种拆分方案中  假设从长度为j的位置剪下第一刀 (j < i)

那么乘积就是  j*(i-j)

i-j这个长度是否还需要拆分 那么取决于dp[i-j]大  还是i-j大

最后得到 从长度为j的位置剪下第一刀 所能得到的最大乘积结果

j的取值范围是 1到i-1的. 最后 代码如下:

class Solution {
public:
int maxProductAfterCutting(int length) {
vector<int> dp(length+,); for(int i = ;i <= length;i++){
for(int j= ;j <i;j++){
dp[i] = max(dp[i] ,max(j*(i-j) ,dp[i-j]*j ));
}
} return dp[length];
}
};

acwing 25. 剪绳子的更多相关文章

  1. 【Java】 剑指offer(13) 剪绳子

    本文参考自<剑指offer>一书,代码采用Java语言. 更多:<剑指Offer>Java实现合集   题目 给你一根长度为n绳子,请把绳子剪成m段(m.n都是整数,n> ...

  2. 《剑指offer》第十四题(剪绳子)

    // 面试题:剪绳子 // 题目:给你一根长度为n绳子,请把绳子剪成m段(m.n都是整数,n>1并且m≥1). // 每段的绳子的长度记为k[0].k[1].…….k[m].k[0]*k[1]* ...

  3. 剑指offer——面试题14:剪绳子

    // 面试题14:剪绳子 // 题目:给你一根长度为n绳子,请把绳子剪成m段(m.n都是整数,n>1并且m≥1). // 每段的绳子的长度记为k[0].k[1].…….k[m].k[0]*k[1 ...

  4. 【Python】剑指offer 14:剪绳子

    题目:给你一根长度为n的绳子,请把绳子剪成m段 (m和n都是整数,n>1并且m>1)每段绳子的长度记为k[0],k[1],-,k[m].请问k[0]k[1]-*k[m]可能的最大乘积是多少 ...

  5. NOJ——1672剪绳子(博弈)

    [1672] 剪绳子 时间限制: 500 ms 内存限制: 65535 K 问题描述 已知长度为n的线圈,两人依次截取1~m的长度,n, m为整数,不能取者为输. 输入 输入n, m:( 0 < ...

  6. 【剑指offer】面试题 14. 剪绳子

    面试题 14. 剪绳子 LeetCode 题目描述 给你一根长度为 n 的绳子,请把绳子剪成 m 段(m.n 都是整数,n>1 并且 m>1),每段绳子的长度记为 k[0],k[1],·· ...

  7. 剑指offer——15剪绳子

    题目描述 给你一根长度为n的绳子,请把绳子剪成m段(m.n都是整数,n>1并且m>1),每段绳子的长度记为k[0],k[1],...,k[m].请问k[0]xk[1]x...xk[m]可能 ...

  8. [剑指offer]14-1.剪绳子

    14-1.剪绳子 方法一 动态规划 思路:递归式为f(n)=max(f(i), f(n-i)),i=1,2,...,n-1 虽然我现在也没有彻底明白这个递归式是怎么来的,但用的时候还是要注意一下.f( ...

  9. 剑指 Offer 14- II. 剪绳子 II + 贪心 + 数论 + 快速幂

    剑指 Offer 14- II. 剪绳子 II 题目链接 因为有取模的操作,动态规划中max不能用了,我们观察:正整数从1开始,但是1不能拆分成两个正整数之和,所以不能当输入. 2只能拆成 1+1,所 ...

随机推荐

  1. Java生鲜电商平台-深入理解微服务SpringCloud各个组件的关联与架构

    Java生鲜电商平台-深入理解微服务SpringCloud各个组件的关联与架构 概述 毫无疑问,Spring Cloud是目前微服务架构领域的翘楚,无数的书籍博客都在讲解这个技术.不过大多数讲解还停留 ...

  2. Ubuntu Server 上使用Docker Compose 部署Nexus(图文教程)

    场景 Docker-Compose简介与Ubuntu Server 上安装Compose: https://blog.csdn.net/BADAO_LIUMANG_QIZHI/article/deta ...

  3. CSRF漏洞原理浅谈

    CSRF漏洞原理浅谈 By : Mirror王宇阳 E-mail : mirrorwangyuyang@gmail.com 笔者并未深挖过CSRF,内容居多是参考<Web安全深度剖析>.& ...

  4. Linux搭建图片服务器减轻传统服务器的压力(nginx+vsftpd)

    传统项目中的图片管理 传统项目中,可以在web项目中添加一个文件夹,来存放上传的图片.例如在工程的根目录WebRoot下创建一个images文件夹.把图片存放在此文件夹中就可以直接使用在工程中引用. ...

  5. Spring注解--实现applicationContext.xml效果

    随着越来越多地使用Springboot敏捷开发,更多地使用注解配置Spring,而不是Spring的applicationContext.xml文件. Configuration注解: Spring解 ...

  6. 人生第一次研读MFC截图工具的笔记心得

    截图工具: 其中用到了动态链接库DLL技术(Dynamic Link Library)技术,键盘钩子技术,光标捕获技术,类橡皮类CRectTracker 头文件:后缀名为.cpp,主要是定义和声明之类 ...

  7. 【使用篇二】Quartz自动化配置集成(17)

    出处:https://www.jianshu.com/p/49133c107143 定时任务在企业项目比较常用到,几乎所有的项目都会牵扯该功能模块,定时任务一般会处理指定时间点执行某一些业务逻辑.间隔 ...

  8. 第04组 Beta版本演示

    小组信息 组名:斗地组 组长博客:地址 组内成员: 组员 学号 林涛(组长) 031702616 童圣滔 031702117 林红莲 031702213 潘雨佳 031702214 覃鸿浩 03170 ...

  9. javascript地址引用

    javascript地址引用 var a = new Object(); a.price = ; var b = a; b.price = ; //b更改了属性值,a的属性值一起会被改变 alert( ...

  10. 上手Neo4j

    Neo4j是什么 软件安装及常用的配置选项介绍 下载 wget https://neo4j.com/artifact.php?name=neo4j-community-3.5.3-unix.tar.g ...