Let's consider the 32 bit representation of all integers i from m up to n inclusive (m ≤ i ≤ n; m × n ≥ 0, -2^31 ≤ m ≤ n ≤ 2^31-1). Note that a negative number is represented in 32 bit Additional Code. That is the 32 bit sequence, the binary sum of which and the 32 bit representation of the corresponding positive number is 2^32 (1 0000 0000 0000 0000 0000 0000 0000 0000 in binary).

For example, the 32 bit representation of 6 is 0000 0000 0000 0000 0000 0000 0000 0110

and the 32 bit representation of -6 is 1111 1111 1111 1111 1111 1111 1111 1010

because

0000 0000 0000 0000 0000 0000 0000 0110 (6) 

1111 1111 1111 1111 1111 1111 1111 1010 (-6) 
-------------------------------------------------
= 1 0000 0000 0000 0000 0000 0000 0000 0000 (2^32)

Let's sort the 32 bit representations of these numbers in increasing order of the number of bit 1. If two 32 bit representations that have the same number of bit 1, they are sorted in lexicographical order.

For example, with m = 0 and n = 5, the result of the sorting will be

No.

Decimal number

Binary 32 bit representation

1

0

0000 0000 0000 0000 0000 0000 0000 0000

2

1

0000 0000 0000 0000 0000 0000 0000 0001

3

2

0000 0000 0000 0000 0000 0000 0000 0010

4

4

0000 0000 0000 0000 0000 0000 0000 0100

5

3

0000 0000 0000 0000 0000 0000 0000 0011

6

5

0000 0000 0000 0000 0000 0000 0000 0101

with m = -5 and n = -2, the result of the sorting will be

No.

Decimal number

Binary 32 bit representation

1

-4

1111 1111 1111 1111 1111 1111 1111 1100

2

-5

1111 1111 1111 1111 1111 1111 1111 1011

3

-3

1111 1111 1111 1111 1111 1111 1111 1101

4

-2

1111 1111 1111 1111 1111 1111 1111 1110

Given m, n and k (1 ≤ k ≤ min{n − m + 1, 2 147 473 547}), your task is to write a program to find a number corresponding to k-th representation in the sorted sequence.

Input

The input consists of several data sets. The first line of the input file contains the number of data sets which is a positive integer and is not bigger than 1000. The following lines describe the data sets.

For each data set, the only line contains 3 integers m, n and k separated by space.

Output

For each data set, write in one line the k-th number of the sorted numbers.

Example

Sample input:

2

0 5 3

-5 -2 2

Sample output:

2

-5

题解:

我们首先考虑 m、n 同正的情况。
由于排序的第一关键字是 1 的数量,第二关键字是数的大小, 因此我们很容易确定答案
中 1 的个数:依次统计区间[m,n]内二进制表示中含 1 的数量为 0,1,2,...的数,直到累加的答
案超过 k,则当前值就是答案含 1 的个数,假设是 s。利用例一的算法可以解决这个问题。
同时,我们也求出了答案是第几个[m,n]中含 s 个 1 的数。因此,只需二分答案,求出[m,ans]
中含 s 个 1 的数的个数进行判断即可。
由于每次询问的复杂度为 O(log(n)),故二分的复杂度为 O(log 2 (n)),这同时也是预处理
的复杂度,因此此算法较为理想。
m<0 的情况,也不难处理,我们只要忽略所有数的最高位,求出答案后再将最高位赋回
1 即可。或者也可以直接将负数视为 32 位无符号数,采用同正数一样的处理方法。两种方
法都需要特别处理 n=0 的情况。

code:

 #include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
char ch;
bool ok;
void read(int &x){
for (ok=,ch=getchar();!isdigit(ch);ch=getchar()) if (ch=='-') ok=;
for (x=;isdigit(ch);x=x*+ch-'',ch=getchar());
if (ok) x=-x;
}
void read(unsigned int &x){
for (ok=,ch=getchar();!isdigit(ch);ch=getchar()) if (ch=='-') ok=;
for (x=;isdigit(ch);x=x*+ch-'',ch=getchar());
if (ok) x=-x;
}
typedef long long int64;
const int maxn=;
const int64 inf=1LL<<;
int T,a,b,s,l,r,m,tmp[maxn];
unsigned int k,x,y,c[maxn][maxn];
void init(){
for (int i=;i<=;i++) c[i][]=;
for (int i=;i<=;i++) for (int j=;j<=i;j++) c[i][j]=c[i-][j-]+c[i-][j];
}
unsigned int calc(int64 n,int k){
int64 t=n;
int len=,res=;
unsigned int ans=;
memset(tmp,,sizeof(tmp));
while (t) tmp[++len]=t&,t>>=;
for (int i=len;i;i--){
if (tmp[i]) ans+=c[i-][k-res],res++;
if (res>k) break;
}
return ans;
}
unsigned int query(unsigned int l,unsigned int r,int s){
if (l<=r) return calc(r+1LL,s)-calc(l,s);
else return calc(inf,s)-calc(l,s)+calc(r+1LL,s);
}
int main(){
init();
for (read(T);T;T--){
read(a),read(b),read(k);
for (s=;s<=;s++){
unsigned int res=query(a,b,s);
if (k>res) k-=res; else break;
}
l=a,r=b;
while (l!=r){
m=(0LL+l+r)>>;
unsigned int res=query(a,m,s);
if (k>res) l=m+; else r=m;
}
printf("%d\n",l);
}
return ;
}

spoj SORTBIT - Sorted bit squence的更多相关文章

  1. SPOJ SORTBIT Sorted bit squence (数位DP,入门)

    题意: 给出一个范围[m,n],按照二进制表示中的1的个数从小到大排序,若1的个数相同,则按照十进制大小排序.求排序后的第k个数.注意:m*n>=0. 思路: 也是看论文的.一开始也能想到是这种 ...

  2. 【SPOJ 1182】 SORTBIT - Sorted bit squence (数位DP)

    SORTBIT - Sorted bit squence no tags Let's consider the 32 bit representation of all integers i from ...

  3. SPOJ 1182 Sorted bit sequence

    题目链接 题意: 分析: 其实如果会了Ural 1057. Amount of Degrees那道题目,这道题自然也就会了... 我们考虑枚举第$k$个数字的$1$的个数,那么我们需要计算的也就是区间 ...

  4. acm数学(转)

    这个东西先放在这吧.做过的以后会用#号标示出来 1.burnside定理,polya计数法    这个大家可以看brudildi的<组合数学>,那本书的这一章写的很详细也很容易理解.最好能 ...

  5. [转] POJ数学问题

    转自:http://blog.sina.com.cn/s/blog_6635898a0100magq.html 1.burnside定理,polya计数法 这个大家可以看brudildi的<组合 ...

  6. ACM数学

     1.burnside定理,polya计数法 这个专题我单独写了个小结,大家可以简单参考一下:polya 计数法,burnside定理小结 2.置换,置换的运算 置换的概念还是比较好理解的,< ...

  7. [DP]数位DP总结

     数位DP总结 By Wine93 2013.7 1.学习链接 [数位DP] Step by Step   http://blog.csdn.net/dslovemz/article/details/ ...

  8. 【专题】数位DP

    [资料] ★记忆化搜索:数位dp总结 之 从入门到模板 by wust_wenhao 论文:浅谈数位类统计问题 数位计数问题解法研究 [记忆化搜索] 数位:数字从低位到高位依次为0~len-1. 高位 ...

  9. 【SPOJ】1182 Sorted bit sequence

    [算法]数位DP [题解]动态规划 写了预处理函数却忘了调用是一种怎样的体验? #include<cstdio> #include<cstring> #include<a ...

随机推荐

  1. spark-streaming-kafka包源码分析

    转载请注明原创地址 http://www.cnblogs.com/dongxiao-yang/p/5443789.html 最近由于使用sparkstreaming的同学需要对接到部门内部的的kafk ...

  2. 翻译Android USB HOST API

    翻译Android USB HOST API 源代码地址:http://developer.android.com/guide/topics/connectivity/usb/host.html 译者 ...

  3. Android如何在Framework层使用解锁代码

    import android.app.KeyguardManager; import android.app.KeyguardManager.KeyguardLock; import com.andr ...

  4. struts 2学习笔记—浅谈struts的线程安全

    Sruts 2工作流程: Struts 1中所有的Action都只有一个实例,该Action实例会被反复使用.通过上面Struts 2 的工作流程的红色字体部分我们可以清楚看到Struts 2中每个A ...

  5. 经常使用虚拟现实仿真软件总汇(zz)

     经常使用虚拟现实仿真软件总汇(zz)http://hi.baidu.com/busycai/blog/item/fe57e41e5f25fa1c403417b2.html 2007年09月07日 星 ...

  6. uva 11178 Morley&#39;s Theorem(计算几何-点和直线)

    Problem D Morley's Theorem Input: Standard Input Output: Standard Output Morley's theorem states tha ...

  7. [Node.js] Scraping Dynamic JavaScript Websites with Nightmare

    Many websites have more than just simple static content. Dynamic content which is rendered by JavaSc ...

  8. Git 经常使用的命令

    查看.参加.服从.删.恢复,复位更改文件 git help <command> # 演出command的help git show # 显示的提交内容 git show $id git c ...

  9. ExtractFileDir 与 ExtractFilePath 的差别

    ExtractFileDir 与 ExtractFilePath 的差别 ExtractFileDir 从文件名称中获取文件夹名(文件不在根文件夹下时取得的值后没有"/",在根文件 ...

  10. MYSQL查询计划KEY_LEN

    http://www.innomysql.com/article/25241.html 1 key_len的含义 2 MySQL中key_len计算规则 3 通过key_len分析联合索引 本文首先介 ...