人工智能大语言模型起源篇,低秩微调(LoRA)

上一篇: 《规模法则(Scaling Law)与参数效率的提高》
序言:您在找工作时会不会经常听到LoRA微调,这项技术的来源就是这里了。
(12)Hu、Shen、Wallis、Allen-Zhu、Li、L Wang、S Wang 和 Chen 于2021年发表的《LoRA: Low-Rank Adaptation of Large Language Models》,https://arxiv.org/abs/2106.09685
现代的大型语言模型在大数据集上进行预训练后,展现了突现能力,并且在多种任务中表现优异,包括语言翻译、总结、编程和问答。然而,如果我们希望提升变换器在特定领域数据和专业任务上的能力,微调变换器是非常值得的。
低秩适配(LoRA)是微调大型语言模型的一种非常有影响力的方法,它具有参数高效的特点。虽然还有其他一些参数高效的微调方法(见下文的综述),但LoRA特别值得一提,因为它既优雅又非常通用,可以应用于其他类型的模型。
虽然预训练模型的权重在预训练任务上是全秩的,但LoRA的作者指出,当预训练的大型语言模型适配到新任务时,它们具有低“内在维度”。因此,LoRA的核心思想是将权重变化(ΔW)分解成低秩表示,这样可以更高效地使用参数。

LoRA 的示例及其性能来自 https://arxiv.org/abs/2106.09685。
(13)Lialin、Deshpande 和 Rumshisky 于2022年发表的《Scaling Down to Scale Up: A Guide to Parameter-Efficient Fine-Tuning》,https://arxiv.org/abs/2303.15647
现代的大型语言模型在大数据集上进行预训练后,展现了突现能力,并且在多种任务中表现优异,包括语言翻译、总结、编程和问答。然而,如果我们希望提升变换器在特定领域数据和专业任务上的能力,微调变换器是非常值得的。本文综述了40多篇关于参数高效微调方法的论文(包括前缀调优、适配器、低秩适配等流行技术),旨在使微调过程(变得)更加高效,尤其是在计算上。

来源:https://arxiv.org/abs/2303.15647
人工智能大语言模型起源篇,低秩微调(LoRA)的更多相关文章
- 本地推理,单机运行,MacM1芯片系统基于大语言模型C++版本LLaMA部署“本地版”的ChatGPT
OpenAI公司基于GPT模型的ChatGPT风光无两,眼看它起朱楼,眼看它宴宾客,FaceBook终于坐不住了,发布了同样基于LLM的人工智能大语言模型LLaMA,号称包含70亿.130亿.330亿 ...
- DyLoRA:使用动态无搜索低秩适应的预训练模型的参数有效微调
又一个针对LoRA的改进方法: DyLoRA: Parameter-Efficient Tuning of Pretrained Models using Dynamic Search-Free Lo ...
- 使用 LoRA 和 Hugging Face 高效训练大语言模型
在本文中,我们将展示如何使用 大语言模型低秩适配 (Low-Rank Adaptation of Large Language Models,LoRA) 技术在单 GPU 上微调 110 亿参数的 F ...
- 保姆级教程:用GPU云主机搭建AI大语言模型并用Flask封装成API,实现用户与模型对话
导读 在当今的人工智能时代,大型AI模型已成为获得人工智能应用程序的关键.但是,这些巨大的模型需要庞大的计算资源和存储空间,因此搭建这些模型并对它们进行交互需要强大的计算能力,这通常需要使用云计算服务 ...
- 人工智能大数据,公开的海量数据集下载,ImageNet数据集下载,数据挖掘机器学习数据集下载
人工智能大数据,公开的海量数据集下载,ImageNet数据集下载,数据挖掘机器学习数据集下载 ImageNet挑战赛中超越人类的计算机视觉系统微软亚洲研究院视觉计算组基于深度卷积神经网络(CNN)的计 ...
- zz【清华NLP】图神经网络GNN论文分门别类,16大应用200+篇论文最新推荐
[清华NLP]图神经网络GNN论文分门别类,16大应用200+篇论文最新推荐 图神经网络研究成为当前深度学习领域的热点.最近,清华大学NLP课题组Jie Zhou, Ganqu Cui, Zhengy ...
- 大数据工具篇之Hive与MySQL整合完整教程
大数据工具篇之Hive与MySQL整合完整教程 一.引言 Hive元数据存储可以放到RDBMS数据库中,本文以Hive与MySQL数据库的整合为目标,详细说明Hive与MySQL的整合方法. 二.安装 ...
- 大数据工具篇之Hive与HBase整合完整教程
大数据工具篇之Hive与HBase整合完整教程 一.引言 最近的一次培训,用户特意提到Hadoop环境下HDFS中存储的文件如何才能导入到HBase,关于这部分基于HBase Java API的写入方 ...
- 吴恩达机器学习笔记59-向量化:低秩矩阵分解与均值归一化(Vectorization: Low Rank Matrix Factorization & Mean Normalization)
一.向量化:低秩矩阵分解 之前我们介绍了协同过滤算法,本节介绍该算法的向量化实现,以及说说有关该算法可以做的其他事情. 举例:1.当给出一件产品时,你能否找到与之相关的其它产品.2.一位用户最近看上一 ...
- 【RS】Local Low-Rank Matrix Approximation - LLORMA :局部低秩矩阵近似
[论文标题]Local Low-Rank Matrix Approximation (icml_2013 ) [论文作者]Joonseok Lee,Seungyeon Kim,Guy Lebanon ...
随机推荐
- SimpleAIAgent:使用免费的glm-4-flash即可开始构建简单的AI Agent应用
SimpleAIAgent是基于C# Semantic Kernel 与 WPF构建的一款AI Agent探索应用.主要用于使用国产大语言模型或开源大语言模型构建AI Agent应用的探索学习,希望能 ...
- [namespace hdk] 64位 bitset
功能 已重载运算符 [](int) (右值,修改请使用 set() 方法) ~() +(bitset) +(unsigned long long) +=(bitset) +=(unsigned lon ...
- Android Systrace 基础知识 -- Systrace 简介
1. 正文 Systrace 是 Android4.1 中新增的性能数据采样和分析工具.它可帮助开发者收集 Android 关键子系统(如 SurfaceFlinger/SystemServer/Ke ...
- element设置table某个列的样式
<el-table style="width: 100%;" height="250" :data="tableData" borde ...
- 1553B总线测试仪
1553B总线测试仪-天津光达航电科技有限公司在测试模拟1553B总线的标准化测试仪器,该仪器是通过简单直观的管理工具实现复杂的MIL-STD-1553的测试及模拟功能,主要包括对MIL-STD-15 ...
- KubeSphere 社区双周报 | OpenFunction v1.0.0-rc.0 发布
KubeSphere 社区双周报主要整理展示新增的贡献者名单和证书.新增的讲师证书以及两周内提交过 commit 的贡献者,并对近期重要的 PR 进行解析,同时还包含了线上/线下活动和布道推广等一系列 ...
- JetBrains IDEs 软件全破解
JetBrains IDE相关产品是一系列专为不同编程语言和平台设计的智能开发工具,它们可以帮助开发者提高效率,编写高质量的代码,和享受编程的乐趣.为当世最有影响力的IDE之一. JB 软件分为都分为 ...
- SpringMvc请求注解@ResponseBody
1.概念 注解 @ResponseBody,使用在控制层(controller)的方法上. 2.作用 作用:将方法的返回值,以特定的格式写入到response的body区域,进而将数据返回给客户端. ...
- 循环程序结构设计(python)
文章目录 1.基本概念 2.for循环 2.1 for循环基本结构 2.2 实例介绍 2.2.1 循环输出字符 2.2.2循环输出2000以内的素数 3.whlie循环 3.1 while循环基本结构 ...
- JavaScript String 对象-常用知识点
JavaScript String 对象-常用知识点 对象用于处理文本(字符串). 对象创建方法: new String(). String 对象属性 属性 描述 constructor 对创建该对象 ...