程序2-4 分类器针对约会网站的测试代码(4)

def datingClassTest():
hoRatio = 0.10

//将文件读入内存矩阵
datingDataMat,datingLabels = file2matrix('datingTestSet.txt')

//归一化,请看(3)
normMat, ranges, minVals = autoNorm(datingDataMat)
m = normMat.shape[0]

//训练样本从第m*hoRatio行开始
numTestVecs = int(m*hoRatio)
errorCount = 0.0

//待预测向量从0开始到m*hoRatio结束
for i in range(numTestVecs):

/*

normMat[i,:] 为取出mormMat的第i+1行,作为待预测的向量

关于normMat[numTestVecs:m,:],为训练样本,取出从i+1行开始的m行,这里m可以大于矩阵的总行数,看下面的例子。

>>> a = zeros((3,3))
>>> a
array([[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.]])
>>> a[1][0]=2
>>> a[2][0]=3
>>> a
array([[ 0., 0., 0.],
[ 2., 0., 0.],
[ 3., 0., 0.]])
>>> a[0:2,:]
array([[ 0., 0., 0.],
[ 2., 0., 0.]])
>>> a[0:4,:]
array([[ 0., 0., 0.],
[ 2., 0., 0.],
[ 3., 0., 0.]])
>>> a[1:4,:]
array([[ 2., 0., 0.],
[ 3., 0., 0.]])

datingLabels[numTestVecs:m] 为训练样本的标签向量,用于预测待预测向量,

取出待预测向量离训练样本最小的3个标签,

*/
classifierResult = classify0(normMat[i,:],normMat[numTestVecs:m,:],
datingLabels[numTestVecs:m],3)

//检查预测值和实际值是否相符合
print "the classifier came back with: %d, the real answer is: %d"
% (classifierResult, datingLabels[i])

if (classifierResult != datingLabels[i]): errorCount += 1.0
print "the total error rate is: %f" % (errorCount/float(numTestVecs))

机器学习实战-边学边读python代码(4)的更多相关文章

  1. 机器学习实战-边学边读python代码(5)

    def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1):    p1 = sum(vec2Classify * p1Vec) + log(pClass1 ...

  2. 机器学习实战-边学边读python代码(3)

    程序清单2-3 归一化特征值: def autoNorm(dataSet): /* >>> barray([[ 1., 2., 3.], [ 2., 3., 4.], [ 10., ...

  3. 《机器学习实战》之一:knn(python代码)

    数据 标称型和数值型 算法 归一化处理:防止数值较大的特征对距离产生较大影响 计算欧式距离:测试样本与训练集 排序:选取前k个距离,统计频数(出现次数)最多的类别 def classify0(inX, ...

  4. 《机器学习实战》——k-近邻算法Python实现问题记录(转载)

    py2.7 : <机器学习实战> k-近邻算法 11.19 更新完毕 原文链接 <机器学习实战>第二章k-近邻算法,自己实现时遇到的问题,以及解决方法.做个记录. 1.写一个k ...

  5. 【机器学习实战】Machine Learning in Action 代码 视频 项目案例

    MachineLearning 欢迎任何人参与和完善:一个人可以走的很快,但是一群人却可以走的更远 Machine Learning in Action (机器学习实战) | ApacheCN(apa ...

  6. 《机器学习实战》AdaBoost算法(手稿+代码)

    Adaboost:多个弱分类器组成一个强分类器,按照每个弱分类器的作用大小给予不同的权重 一.Adaboost理论部分 1.1 adaboost运行过程 注释:算法是利用指数函数降低误差,运行过程通过 ...

  7. Python 机器学习实战 —— 监督学习(下)

    前言 近年来AI人工智能成为社会发展趋势,在IT行业引起一波热潮,有关机器学习.深度学习.神经网络等文章多不胜数.从智能家居.自动驾驶.无人机.智能机器人到人造卫星.安防军备,无论是国家级军事设备还是 ...

  8. Python 机器学习实战 —— 无监督学习(上)

    前言 在上篇<Python 机器学习实战 -- 监督学习>介绍了 支持向量机.k近邻.朴素贝叶斯分类 .决策树.决策树集成等多种模型,这篇文章将为大家介绍一下无监督学习的使用.无监督学习顾 ...

  9. Python 机器学习实战 —— 无监督学习(下)

    前言 在上篇< Python 机器学习实战 -- 无监督学习(上)>介绍了数据集变换中最常见的 PCA 主成分分析.NMF 非负矩阵分解等无监督模型,举例说明使用使用非监督模型对多维度特征 ...

随机推荐

  1. 1069. The Black Hole of Numbers (20)

    For any 4-digit integer except the ones with all the digits being the same, if we sort the digits in ...

  2. php继承后构造函数的特性

    在5.x版本的php中: 如果父类有构造函数,它的子类也有构造函数,那么在运行子类时就“不会执行父类的构造函数”. 要想执行父类的构造函数,需要在子类的构造函数中加上: parent::__const ...

  3. php二维数组的取值与转换

    while(list($key,$value) = each($arr)) { while(list($k,$v) = each($value)) { echo $key."==>&q ...

  4. ZK 使用Clients.response

    参考: http://stackoverflow.com/questions/11416386/how-to-access-au-response-sent-from-server-side-at-c ...

  5. 使用Font Awesome替换你的网站图标

    http://fortawesome.github.io/Font-Awesome/whats-new/ 使用Font Awesome替换你的网站图标 ******************IE7BUG ...

  6. iframe父子页面之间相互调用元素和函数

    <!doctype html> <html> <head> <meta http-equiv="Content-Type" content ...

  7. 对js中的Date扩展,格式化日期

    /** * 对Date的扩展,将 Date 转化为指定格式的String 月(M).日(d).12小时(h).24小时(H).分(m).秒(s).周(E).季度(q) * 可以用 1-2 个占位符 年 ...

  8. Web前端开发基础 第四课(CSS一些性质)

    继承 CSS的某些样式是具有继承性的,那么什么是继承呢?继承是一种规则,它允许样式不仅应用于某个特定html标签元素,而且应用于其后代.比如下面代码:如某种颜色应用于p标签,这个颜色设置不仅应用p标签 ...

  9. Hibernate配置Log4J,很有参考价值的

    hibernate3 自带的默认的日志框架是slf4j,hibernate3的slf只是一个日志的接口,而hibernate3 自带默认的日志框架,在实际开发中很少有公司或者是项目中用到,这里记录一种 ...

  10. Python脚本模拟登录网页之CSDN篇

    1. 通过Firefox配合插件Tamper Date获取登录时客户端向服务器端提交的数据, 并且发现lt和execution这两个字段每次登录时都不一样. POSTDATA=username=you ...