HDU 1565 最大点权独立集
首先要明白图论的几个定义:
点覆盖、最小点覆盖:
点覆盖集即一个点集,使得所有边至少有一个端点在集合里。或者说是“点” 覆盖了所有“边”。。
最小点覆盖(minimum vertex covering):
点最少的点覆盖。
点覆盖数(vertex covering number):
最小点覆盖的点数。
独立集:
独立集即一个点集,集合中任两个结点不相邻,则称V为独立集。或者说是导出的子图是零图(没有边)的点集。
最大独立集(maximum independent set):
点最多的独立集。
独立数(independent number):
最大独立集的点。
若把上面最小点覆盖和最大独立集中的端点数改成点的权值,分别就是最小点权覆盖和最大点权独立集的定义。
然后通过推导,我们可以证明一下公式:(具体证明请看胡伯涛《最小割模型在信息学竞赛中的应用》,这里只考虑应用)
最大点权独立集=总权值-最小点权覆盖集。
最小点权覆盖集=图的最小割值=最大流。
这道题很明显就是求最大点权独立集,所以直接套用公式即可。
建图:如果S与(i+j)%2==0的点相连,(i+j)%2==1的点与T相连,容量为该点的权值。(i+j)%==0与(i+j)%2==1的点相连,容量为无限大。
代码:
#include<stdio.h>
#include<string.h>
#include<iostream>
using namespace std;
const int INF=0x3f3f3f3f;
const int N=;
const int M=N*N;
int h[N],gap[N],head[N];
int cnt,n,m,s,t;
int a[N][N];
struct node
{
int v,c,next;
}e[M]; void init()
{
memset(head,-,sizeof(head));
cnt=;
}
void add(int u,int v,int w)
{
e[cnt].v=v,e[cnt].c=w;
e[cnt].next=head[u];head[u]=cnt++;
e[cnt].v=u,e[cnt].c=;
e[cnt].next=head[v];head[v]=cnt++;
}
int dfs(int u,int flow)
{
if(u==t) return flow;
int c=flow,a,i,v,minh=t;
for(i=head[u];i!=-;i=e[i].next)
{
if(e[i].c)
{
v=e[i].v;
if(h[v]==h[u]-)
{
a=min(c,e[i].c);
a=dfs(v,a);
e[i].c-=a;
e[i^].c+=a;
c-=a;
if(h[s]>t) return flow-c;
if(!c) break;
}
minh=min(minh,h[v]);
}
}
if(c==flow)
{
if(--gap[h[u]]==) h[s]=t+;
h[u]=minh+;
++gap[h[u]];
}
return flow-c;
}
int isap()
{
memset(gap,,sizeof(gap));
memset(h,,sizeof(h));
int ans=;gap[]=t+;
while(h[s]<=t)
ans+=dfs(s,INF);
return ans;
}
int main()
{
int i,j,sum;
while(scanf("%d",&n)!=EOF)
{
sum=;init();s=,t=n*n+;
for(i=;i<=n;i++)
{
for(j=;j<=n;j++)
{
scanf("%d",&a[i][j]);
sum+=a[i][j];
if((i+j)%==)
{
add(s,(i-)*n+j,a[i][j]);
if(i>) add((i-)*n+j,(i-)*n+j,INF);
if(j>) add((i-)*n+j,(i-)*n+j-,INF);
if(i<n) add((i-)*n+j,(i)*n+j,INF);
if(j<n) add((i-)*n+j,(i-)*n+j+,INF);
}
else
add((i-)*n+j,t,a[i][j]);
}
}
printf("%d\n",sum-isap());
}
return ;
}
HDU 1565 最大点权独立集的更多相关文章
- hdu 1565&&hdu 1569 (最大点权独立集)
题目意思很明确就是选一些没有相连的数字,使和最大,建成二分图后求最大点权独立集,, #include<stdio.h> #include<string.h> const int ...
- hdu 4859 最大点权独立集的变形(方格取数的变形)
/*刚开始不会写,最大点权独立集神马都不知道,在潘神的指导下终于做出来,灰常感谢ps: 和方格取数差不多奇偶建图,对于D必割点权为0,对于.必然不割点权为inf.然后和方格取数差不多的建图 .--.| ...
- hdu 3657 最大点权独立集变形(方格取数的变形最小割,对于最小割建图很好的题)
转载:http://blog.csdn.net/cold__v__moon/article/details/7924269 /* 这道题和方格取数2相似,是在方格取数2的基础上的变形. 方格取数2解法 ...
- hdu 3657最大点权独立集变形(方格取数变形)
/* 分奇偶为二部图,s与奇建图,t与偶建图,权值为当前数的值,如果遇到必取的权值置为inf. 奇偶建边为相邻的权值为2*(x&y):所有数的值-最小点全覆盖. 置为inf意为不能割掉.奇偶边 ...
- HDU 1565 方格取数(1)(最大点权独立集)
http://acm.hdu.edu.cn/showproblem.php?pid=1565 题意: 给你一个n*n的格子的棋盘,每个格子里面有一个非负数. 从中取出若干个数,使得任意的两个数所在的格 ...
- HDU 1565 1569 方格取数(最大点权独立集)
HDU 1565 1569 方格取数(最大点权独立集) 题目链接 题意:中文题 思路:最大点权独立集 = 总权值 - 最小割 = 总权值 - 最大流 那么原图周围不能连边,那么就能够分成黑白棋盘.源点 ...
- hdu - 1565 方格取数(1) && 1569 方格取数(2) (最大点权独立集)
http://acm.hdu.edu.cn/showproblem.php?pid=1565 两道题只是数据范围不同,都是求的最大点权独立集. 我们可以把下标之和为奇数的分成一个集合,把下标之和为偶数 ...
- HDU 1565:方格取数(1)(最大点权独立集)***
http://acm.hdu.edu.cn/showproblem.php?pid=1565 题意:中文. 思路:一个棋盘,要使得相邻的点不能同时选,问最大和是多少,这个问题就是最大点权独立集. 可以 ...
- HDU 1569 - 方格取数(2) - [最大点权独立集与最小点权覆盖集]
嗯,这是关于最大点权独立集与最小点权覆盖集的姿势,很简单对吧,然后开始看题. 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1569 Time Limi ...
随机推荐
- Java中的继承
我们在以前的学习中,我们会了C#中的继承,今天我们来了解了解Java中的继承,其实都大同小异啦! 1.语法 修饰符 SubClass extends SuperClass(){ //类定义部分 } e ...
- [性能] Bean拷贝工具类性能比较
Bean拷贝工具类性能比较 引言 几年前做过一个项目,接入新的api接口.为了和api实现解耦,决定将api返回的实体类在本地也建一个.这样做有两个好处 可以在api变更字段的时候保持应用稳定性 可以 ...
- C#生成条形码 Code128算法
条形有很多种,Code128是比较常用的一种,是一种高密度条码, CODE128 码可表示从 ASCII 0 到ASCII 127 共128个字符,故称128码.其中包含了数字.字母和符号字符. Co ...
- SharePoint 2013 新功能探索 之 SPGroup、SPUser 事件处理程序 还要继续改进
曾几何时,想要获取SPGroup Add及SPUserAdd事件,在网上查找各种方法,都没有找到相对应的解决办法,如今在VS 2013 Preview版本 提供了 SPSecurityEventRec ...
- 自制javascript游戏-点燃火绳
自制javascript游戏-点燃火绳 这是一款多关卡的游戏,目录有21个地图,游戏采纯原生 js库JY编写,所以编写得很简单迅速,这款游戏的思路来源于,一个人撸管太多,手会不会连鼠标也拿不稳,为了验 ...
- javascript的封装实例
StringBuffer方法的js自定义封装: <!doctype html><html lang="en"> <head> <meta ...
- ABAP--如何在ALV_Grid的函数中定义下拉列表
最近经常听到网友和用户需求希望你在ALV Grid的函数中加入下来列表,其实SAP已经考虑了大家的需求,用户的需求是可以实现的.我特地将代码奉献给大家,供大家参考和学习. 代码如下: REPORT.* ...
- ListView属性整理
stackFromBottom属性,这只该属性之后你做好的列表就会显示你列表的最下面,值为true和false android:stackFromBottom="true" 第 ...
- Static Cell-静态TableView
使用静态TableView有两个前提,1.要在Storyboard上 2.需要使用TableViewController PS:如果需要设置不同的cell的高度不同的话,还是需要使用tableVie ...
- 基础学习day01--JAVA入门和JDK的安装与配置
一.软件是什么 软件按照一定顺序组成的计算机指令和数据集合. 二.什么是软件开发 软件开发是使用计算机的语言制作的软件.如迅雷,Windows系统,Linux,QQ等. 三.DOS常用命令 cd..: ...