变量的选择——Lasso&Ridge&ElasticNet
对模型参数进行限制或者规范化能将一些参数朝着0收缩(shrink)。使用收缩的方法的效果提升是相当好的,岭回归(ridge regression,后续以ridge代称),lasso和弹性网络(elastic net)是常用的变量选择的一般化版本。弹性网络实际上是结合了岭回归和lasso的特点。
Lasso和Ridge比较
- Lasso的目标函数:

- Ridge的目标函数:

- ridge的正则化因子使用二阶范数,虽然ridge可以将参数估计值向0收缩,但对于任何调优后的参数值,它都无法将某些参数值变为严格的0,尽管某些参数估计值变得非常小以至于可以忽略,但实际上它并没有进行变量选择。所以L1范数和L2范数正则化都有助于降低过拟合风险,但L1范数还带来一个额外的好处,它比L2范数更易于获得“稀疏(sparse)”解,即它所求的w会有更少的非零分量。
- 为何ridge到lasso,从L2范数变成L1范数,lasso就能够把参数估计收缩为0而ridge就不行呢?对于Lasso而言,优化下面两个方程是等价的:

也就是说,对每个超参λ,都存在相应的s值,使得上面两个方程优化后得到的参数估计相同。
类似的,对于Ridge,下面两个方程等价:

当参数维度p=2时,lasso的参数估计是在|β1|+|β2|<=s条件下,β1和β2最小化RSS的。ridge的参数估计是在β12+β22<=s的参数取值中最小化RSS的。当s很大时,限制条件几乎是无效的,lasso和ridge退化为最小二乘法,相反,如果s很小时,那么可能的参数取值范围就非常有限。

红线是平方误差项RSS的等值线,左侧青绿色的正方形是L1范数约束下的(β1,β2)的取值空间,右侧青绿色的圆形是L2范数约束下的(β1,β2)的取值空间。上面两个方程组的解要在平方误差项RSS和正则化项之间折中,及出现在图中平方误差项等值线与正则化项等值线相交处。从上图可以看出,使用L1范数时平方误差项等值线与正则化等值线的交点常常出现在坐标轴上,即w1或者w2为0,而在采用L2范数时,两者交点往往出现在某个象限中,即w1或者w2均非0,也就是说,L1范数比L2范数更易得到稀疏解。
弹性网络ElasticNet
弹性网络的目标函数:

弹性网络则是同时使用了L1和L2作为正则化项,ElasticNet在sklearn的地址:ElasticNet
参数中
l1_ratio为L1范数惩罚项所占比例,0 <= l1_ratio <= 1。若l1_ratio =0时,弹性网络退化为ridge(只剩L2范数的惩罚项)。参数中alpha即为上式中的α,越大对参数惩罚越大,越不容易过拟合。
使用样例:import numpy as np
from sklearn import linear_model ###############################################################################
# Generate sample data
n_samples_train, n_samples_test, n_features = 75, 150, 500
np.random.seed(0)
coef = np.random.randn(n_features)
coef[50:] = 0.0 # only the top 10 features are impacting the model
X = np.random.randn(n_samples_train + n_samples_test, n_features)
y = np.dot(X, coef) # Split train and test data
X_train, X_test = X[:n_samples_train], X[n_samples_train:]
y_train, y_test = y[:n_samples_train], y[n_samples_train:] ###############################################################################
# Compute train and test errors
alphas = np.logspace(-5, 1, 60)
enet = linear_model.ElasticNet(l1_ratio=0.7)
train_errors = list()
test_errors = list()
for alpha in alphas:
enet.set_params(alpha=alpha)
enet.fit(X_train, y_train)
train_errors.append(enet.score(X_train, y_train))
test_errors.append(enet.score(X_test, y_test)) i_alpha_optim = np.argmax(test_errors)
alpha_optim = alphas[i_alpha_optim]
print("Optimal regularization parameter : %s" % alpha_optim) # Estimate the coef_ on full data with optimal regularization parameter
enet.set_params(alpha=alpha_optim)
coef_ = enet.fit(X, y).coef_ ###############################################################################
# Plot results functions import matplotlib.pyplot as plt
plt.subplot(2, 1, 1)
plt.semilogx(alphas, train_errors, label='Train')
plt.semilogx(alphas, test_errors, label='Test')
plt.vlines(alpha_optim, plt.ylim()[0], np.max(test_errors), color='k',
linewidth=3, label='Optimum on test')
plt.legend(loc='lower left')
plt.ylim([0, 1.2])
plt.xlabel('Regularization parameter')
plt.ylabel('Performance') # Show estimated coef_ vs true coef
plt.subplot(2, 1, 2)
plt.plot(coef, label='True coef')
plt.plot(coef_, label='Estimated coef')
plt.legend()
plt.subplots_adjust(0.09, 0.04, 0.94, 0.94, 0.26, 0.26)
plt.show()

周志华:机器学习
http://www4.stat.ncsu.edu/~post/josh/LASSO_Ridge_Elastic_Net_-_Examples.html
http://blog.csdn.net/qq_21904665/article/details/52315642
http://blog.peachdata.org/2017/02/07/Lasso-Ridge.html
变量的选择——Lasso&Ridge&ElasticNet的更多相关文章
- 《机器学习_01_线性模型_线性回归_正则化(Lasso,Ridge,ElasticNet)》
一.过拟合 建模的目的是让模型学习到数据的一般性规律,但有时候可能会学过头,学到一些噪声数据的特性,虽然模型可以在训练集上取得好的表现,但在测试集上结果往往会变差,这时称模型陷入了过拟合,接下来造一些 ...
- 【机器学习】Linear least squares, Lasso,ridge regression有何本质区别?
Linear least squares, Lasso,ridge regression有何本质区别? Linear least squares, Lasso,ridge regression有何本质 ...
- L1,L2范数和正则化 到lasso ridge regression
一.范数 L1.L2这种在机器学习方面叫做正则化,统计学领域的人喊她惩罚项,数学界会喊她范数. L0范数 表示向量xx中非零元素的个数. L1范数 表示向量中非零元素的绝对值之和. L2范数 表 ...
- php变量双击选择无法选择$符号
创建/Data/Packages/User/PHP.sublime-settings文件,内容为 { "word_separators": "./\\()\&qu ...
- [Scikit-learn] 1.5 Generalized Linear Models - SGD for Regression
梯度下降 一.亲手实现“梯度下降” 以下内容其实就是<手动实现简单的梯度下降>. 神经网络的实践笔记,主要包括: Logistic分类函数 反向传播相关内容 Link: http://pe ...
- 转载:线性回归建模–变量选择和正则化(1):R包glmnet
2013-07-15 21:41:04 #本文的目的在于介绍回归建模时变量选择和正则化所用的R包,如glmnet,ridge,lars等.算法的细节尽量给文献,这个坑太大,hold不住啊. 1.变 ...
- 再谈Lasso回归 | elastic net | Ridge Regression
前文:Lasso linear model实例 | Proliferation index | 评估单细胞的增殖指数 参考:LASSO回歸在生物醫學資料中的簡單實例 - 生信技能树 Linear le ...
- spss如何选择需要的变量?
spss如何选择需要的变量? 今天一位网友问我,spss如何在许多字段(变量)中选择我需要的字段,而不显示其他的字段呢? 这个问题问的很好,在实际的数据分析或者挖掘的过程中,都需要用这个来找出对商业问 ...
- ISLR系列:(4.1)模型选择 Subset Selection
Linear Model Selection and Regularization 此博文是 An Introduction to Statistical Learning with Applicat ...
随机推荐
- Swagger 专题
随着互联网技术的发展,现在的网站架构基本都由原来的后端渲染,变成了:前端渲染.前后端分离的形态,而且前端和后端在各自的技术道路上越走越远. 前端和后端的唯一联系,变成了API接口:API文档成了前后端 ...
- 瀑布流的一些CSS实现方式
一个选择是用CSS3的多列columns,可以参考这篇文章.但这篇文章给的例子并不怎么好理解,我做了一些更改,在每个元素上加了序号.可以看到,多列布局是在每一列上依次排列元素的,第一列排完才开始排第二 ...
- SVM明确的解释1__
线性可分问题
笔者:liangdas 出处:简单点儿,通俗点儿,机器学习 http://blog.csdn.net/liangdas/article/details/44251469 引言: 1995年Cor ...
- An HTTP & HTTP/2 client for Android and Java applications OkHttp
HTTP is the way modern applications network. It’s how we exchange data & media. Doing HTTP effic ...
- 相关ubuntu有几个细节有用的工具系列
前言 于Linux制,FTPserver有许多软件,我们已经成熟,像vsftpd, wu-ftp, Pure-FTPd等一下.不过该软件的安装一切,配置比较麻烦,建立个人FTPserver,仍是Pro ...
- 全分布式的Hadoop初体验
背景 之前的时间里对 Hadoop 的使用都是基于学长所搭建起的实验环境的,没有完整的自己部署和维护过,最近抽时间初体验了在集群环境下装机.配置.运行的全过程,梳理总结到本文中. 配置 内存:8G C ...
- C++中的模板编程
一,函数模板 1.函数模板的概念 C++中提供了函数模板,所谓函数模板,实际上是建立一个通用函数,其函数的返回值类型和函数的参数类型不具体指定,用一个虚拟的类型来表示.这个通用函数就被称为函数的模板. ...
- 数学思想方法-python计算战(8)-机器视觉-二值化
二值化 hreshold Applies a fixed-level threshold to each array element. C++: double threshold(InputArray ...
- POJ 1328 Radar Installation(经典贪婪)
Radar Installation Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 54143 Accepted: 12 ...
- Qt 绘制平滑曲线
本文介绍在 Qt 中绘制平滑曲线的实现,调用下面的函数 SmoothCurveGenerator::generateSmoothCurve(points) 即可.默认曲线的 2 个顶点之间被分割为 1 ...